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a b s t r a c t 

The ability to control and manipulate heat flow is of great interest to thermal management and ther- 

mal logic and memory devices. Particularly, near-field thermal radiation presents a unique opportunity 

to enhance heat transfer while being able to tailor its characteristics (e.g., spectral selectivity). However, 

achieving nanometric gaps, necessary for near-field, has been and remains a formidable challenge. Here, 

we demonstrate significant enhancement of the near-field heat transfer through meshed photonic crystals 

with separation gaps above 0.5 μm. Using a first-principle method, we investigate the meshed photonic 

structures numerically via finite-difference time-domain technique (FDTD) along with the Langevin ap- 

proach. Results for doped-silicon meshed structures show significant enhancement in heat transfer; 26 

times over the non-meshed corrugated structures. This is especially important for thermal management 

and thermal rectification applications. The results also support the premise that thermal radiation at 

micro scale is a bulk (rather than a surface) phenomenon; the increase in heat transfer between two 

meshed-corrugated surfaces compared to the flat surface (8.2) wasn’t proportional to the increase in 

the surface area due to the corrugations (9). Results were further validated through good agreements 

between the resonant modes predicted from the dispersion relation (calculated using a finite-element 

method), and transmission factors (calculated from FDTD). 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Manipulating heat transfer is of engineering interest for its po- 

tential applications in thermal storage, thermal management and 

thermal logic [1] and memory [2–4] devices. However, controlling 

heat transfer is a challenge due to the lack of perfect thermal in- 

sulators, unlike in the case of electricity. Vacuum is an efficient 

thermal insulator, however not perfect since radiative heat transfer 

can still flow through vacuum. Nevertheless, using near-field ef- 

fects, thermal radiation enhancement and/or suppression through 

vacuum can result in desired tailoring of heat transfer. 

It has been demonstrated that near-field thermal radiation can 

enhance the radiative heat transfer dramatically, even beyond the 

classical theoretical limit of the blackbody radiation [5,6] . The 

transfer of thermal energy by near-field radiation occurs when a 

thermal emitter and receiver are brought very close to each other, 

at distances near or below the characteristic wavelength of ther- 

mal radiation. At this close proximity, in addition to propagating 

harmonic electromagnetic waves (as in the case of blackbody radi- 
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ation), evanescent (i.e., non-propagating) waves which are confined 

to the thermal emitter’s surface (i.e., can only propagate along the 

surface) participate in the thermal energy transfer. The extra chan- 

nels for heat flow created by these evanescent waves increase the 

rate of heat transfer exchange exponentially with decreasing sep- 

aration gap (i.e., the smaller the gap, the stronger the evanescent 

fields are and the higher the thermal radiation exchange rate) [7,8] . 

These particularities of near-field thermal radiation make it ideal 

for thermal modulation applications, such as with thermal mem- 

ory, thermal diode [9–13] and thermal switches [14,15] . 

Near-field thermal radiation has been of interest to scien- 

tists since the 1960s [16,17] , and it has become increasingly 

an engineering research topic for the past two decades with 

advances in nano/microfabrication techniques. Research efforts 

to enhance near-field thermal radiation range from the use 

of nano/microstructures [18–23] , thin layers of polar dielectrics 

[24,25] , patterned layers of graphene [26,27] , extremely-thin pho- 

tonic crystals [28] and metal-dielectric structures that have hyper- 

bolic dispersion [29–31] . Despite the numerous approaches, very 

few are practical from the engineering standpoint; thin films of 

polar dielectrics [32] would be an example. Most significant en- 

gineering barriers include the fabrication of nanometric separation 

gaps and the implementation of exotic materials such as graphene. 
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Fig. 1. Meshed photonic crystal layout (a) and computational domain (b-c). 

In this paper, we are introducing a practical method for en- 

hancing near-field thermal radiation, without necessarily using 

extremely small nanometer gaps. We propose using meshed pho- 

tonic crystals with variable separation gaps as shown in Fig. 1 . 

The meshing increases the area available for heat transfer by 

thermal radiation and introduce new resonant electromagnetic 

modes. Both effects are expected to enhance the rate of radiative 

heat transfer. The meshed photonic crystals have a minimum 

separation gap of 0.5 μm, achievable with standard microfabri- 

cation techniques (i.e., projection lithography and deep reactive 

ion etching). We used gratings since they are one of the simplest 

structures and have commonly been used in optics applications. 

The photonic crystals are made out of doped-silicon which is fully 

compatible with most standard microfabrication techniques, well 

characterized, and most importantly, its optical properties can be 

controlled by varying its doping level [33] ; it can be engineered to 

act as an opaque metal or transparent dielectric. We investigated 

the meshed photonic crystal numerically using a first principle 

finite-difference time-domain technique (FDTD). The technique 

solves Maxwell’s equations with added fluctuating current source 

(to simulate thermal radiation source). We investigate the effect 

of tooth depth and meshing on the heat transfer and discuss the 

resonant modes leading to the observed enhancement in heat 

transfer. In parallel, we calculated the dispersion relation using 

finite-element method to verify the resonance frequencies in heat 

transfer from the FDTD results. 

2. Methods 

The geometry of the meshed photonic crystal investigated in 

this study is shown in Fig. 1 . It is defined by its period a , tooth 

height ht , spacing between meshed teeth dx , separation distance 

dc , and base thickness hb . We model the near-field thermal radia- 

tion using a first-principle technique that simulate the source, scat- 

tering and absorption of thermal electromagnetic waves. We use 

finite-difference time-domain (FDTD) method to solve Maxwell’s 

equations with random fluctuating current density source to repre- 

sent the origin of thermal radiation. We adopted the same method 

introduced by Luo et al. [34] to simulate the fluctuating current 

based on the Langevin approach. With this method, a simple vari- 

ation is made to the FDTD algorithm [35] by introducing a ran- 

domly fluctuating component (in both magnitude and direction) 

to the polarization equation. The polarization equation defines the 

material’s polarization response due to local electric field, and it 

is used to update the value of the electric field in time stepping 

through the FDTD algorithm [34] 
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where εv is the vacuum permittivity. γ , ω p and ω 0 are the param- 

eters of the Lorentz damped-harmonic oscillator model that de- 

scribes the polarization response to electric field. γ is the frictional 

coefficient or scattering rate, ω p is the plasma frequency, and ω 0 

is the polarization resonant frequency. K ( t ) is a random variable 

added to the polarization equation to introduce thermal fluctua- 

tions. In this work, we use doped-silicon which optical proper- 

ties in the infrared regime ( λ> 2 μm) can be modeled using the 

Drude model [33] . The photonic crystal structures are modeled us- 

ing heavily doped-silicon (p-type 5 × 10 20 [cm 

− 3 ]) with the follow- 

ing Drude model parameters: ε∞ 

= 11.7, ω p = 2.0738 × 10 15 [rad/s], 

and γ = 1.3557 × 10 14 [rad/s]. 

To simulate the source of thermal radiation, the random fluc- 

tuations in the current density need to follow the fluctuation- 

dissipation theorem: 〈
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Where J r α is the current density in direction α (x, y, or z), �( ω, 

T ) is the mean energy of Planck’s oscillator; 
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δ( r ′ − r ′ ′ ) and δ( ω −ω 

′ ) are Dirac delta functions, indicating that 

currents are uncorrelated in both spatial space and frequency do- 

main. δαβ is the Kronecker delta which equal 1 for α = β , and zero 

otherwise, for an isotropic medium. ε 
′′ 
r is the imaginary part of the 

relative permittivity of the material incorporating the fluctuating 

current, and εν is the permittivity of free space. 

To achieve fluctuations in current density that satisfies Eq. (2) , 

K ( t ) needs to have a frequency profile of the form [34] : 〈
K 
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where C is a constant comprising material’s parameters and vol- 

ume of discretization elements used in FDTD. The correlation in 

Eq. (4) is colored noise and it is possible to incorporate it in the 

FDTD algorithm. However, there are two inconveniences: the sim- 

ulation will be only valid for a fixed temperature (used to calcu- 

late �( ω, T )), and the generating colored noise needs more com- 

putation power and memory than the simple Gaussian white-noise 
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