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a b s t r a c t 

This work introduces particular classes of vector wave fields for light scattering calculations, viz. struc- 

tured light fields composed of specific superpositions of circularly symmetric Bessel beams of arbitrary 

order. Also known as generalized frozen waves, such beams carry all the non-diffracting properties of their 

constituents with the additional feature of allowing for an arbitrary design of the longitudinal intensity 

pattern along the surface of several cylinders of fixed radius, simultaneously. This feature makes the gen- 

eralized frozen waves especially suitable for optical confinement and manipulation and atom guiding and 

selection. In the framework of the generalized Lorenz–Mie theory, the beam shape coefficients which de- 

scribe such beams are evaluated in exact and analytic form, the resulting expressions being then applied 

in light scattering problems. Particular frozen waves are considered beyond the paraxial approximation, 

optical forces being calculated for specific dielectric Rayleigh particles. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Non-diffracting Bessel beams (BBs) are solutions to the vector 

wave equation that are capable of overcoming the sometimes un- 

desired effects of diffraction over long distances when compared 

to what is usually called conventional beams [1,2] . Whether gener- 

ated by finite or annular apertures, axicons, computational holog- 

raphy or so, BBs have proven their value during the last decades in 

light scattering problems and light-matter interactions, with due 

attention to optical confinement and manipulation of micro and 

nano-sized scatterers. In optical tweezers, the multi-ringed struc- 

ture of BBs can easily provide for simultaneous manipulation of 

biological particles at multiple planes [3–7] . 

Even though single arbitrary-order BBs are incapable of pro- 

viding effective three-dimensional traps, it has recently been sug- 

gested that, perhaps and at least in theory, suitably-designed 

beams constructed from superpositions of BBs could account for 

that while still (and naturally) carrying all the non-diffracting char- 

acteristics of its constituents, viz. resistance to diffraction (and, un- 

der certain conditions, to attenuation as well), self-healing and ex- 

tended focus [8] . The main premise is that an almost arbitrary 

longitudinal intensity pattern can be modeled by superposing BBs 
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with the same frequency but otherwise distinct longitudinal (or, 

equivalently, transverse) wave numbers. 

Such optical fields - known as frozen waves - have been origi- 

nally conceived as interesting solutions to the scalar wave equation 

with potential applications in remote sensing, free space commu- 

nication, optical alignment, optical trapping and atom guiding, to 

mention a few [9,10] . A finite number of zero-order BBs were ini- 

tially summed over to create as interesting a longitudinal field pat- 

tern as a growing exponential one, even in absorbing media [11,12] . 

Soon after its conception, natural extensions appeared incorporat- 

ing not only higher order, but also continuous, generalized, vec- 

tor and/or finite-energy frozen waves [13–17] . Scalar and vector 

frozen waves some of which with extremely confined structured 

fields were theoretically investigated, with the first experimental 

generations confirming those studies and predictions [18–21] . 

The first theoretical and numerical considerations of frozen 

waves for optical trapping and manipulation appeared recently 

[8,22,23] . However, we observe that the analysis is still quite re- 

stricted: scalar frozen waves are taken for granted and are ba- 

sically transformed into transverse electromagnetic vector beams, 

thus constraining all subsequent considerations to the paraxial ap- 

proximation (small half-cone angles). In a sense, that is why the 

incorporation of frozen waves in the framework of the general- 

ized Lorenz–Mie theories (GLMT) extensions of the Mie theory for 

arbitrary-shaped beams [24] has been successfully but, at the same 

time, exclusively carried over by means of the localized approxima- 
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tion in order to compute the beam shape coefficients (BSCs) which 

describes the spatial deviations of a particular light field from a 

plane wave [22,23] . 

In order to go beyond the paraxial approximation, vector de- 

scriptions of frozen waves are due. In the literature, linear, az- 

imuthal, circular, elliptical and radial polarizations have already 

been considered [16,17] , some of which exclusively for discrete 

frozen waves [16] . However, in view of the multipole expansion 

for light scattering problems and as interesting as they may be, 

a more tractable polarization may be considered which allows for 

analytic descriptions of the corresponding BSCs: the circular sym- 

metric polarization [25,26] . It has been recently shown that exact 

and analytic expressions of the BSCs for circularly polarized BBs 

can be found, thus avoiding double and triple integrations (quadra- 

ture techniques) [27] . 

Here, we investigate a promising vector frozen wave for light 

scattering problems in the context of the GLMT and envisioning its 

application in the field of optical confinement and manipulation, 

viz., the circularly symmetric frozen wave. In addition to intro- 

ducing a full Maxwellian nature to such diffractionless beams, the 

discrete frozen waves here considered may be constructed from 

an arbitrary number of discrete frozen waves of different order. 

They are, therefore, generalized frozen waves (GFWs) of multiple 

order [15] . The advantage of dealing with GFWs should be evident: 

they automatically provide means to construct independent and si- 

multaneous longitudinal intensity patterns along specific distances 

[15] . Besides, as noticed elsewhere, GFWs may be seen as hollow 

optical beams in atom guiding [15] . 

We divide this paper as follows. Section 2 presents a back- 

ground on the theoretical aspects of GFWs and their circularly 

symmetric description in the GLMT in terms of analytic expres- 

sions for the BSCs. In Section 3 , two examples of circularly sym- 

metric GFWs are considered with longitudinal intensity patterns 

which may be of interest, e.g. in optical trapping and manipulation 

of micro-particles. Radiation pressure forces are calculated for spe- 

cific Rayleigh scatterers in order to infer the capabilities of GFWs 

in providing effective three-dimensional traps. Finally, our conclu- 

sions are presented. 

2. Theoretical background 

In order to give a brief account on scalar GFWs, let us first con- 

sider the original frozen wave constructed from 2 N + 1 scalar BBs 

of arbitrary order v . Using cylindrical coordinates ( ρ , φ, z ) and with 

the time-harmonic factor exp(+ iωt) implicitly assumed, one has 

the discrete scalar frozen wave [12] : 

ψ F W 

( ρ, φ, z ) = 

N ∑ 

q = −N 

A q J v 
(
k ρq ρ

)
e i v φe −ik zq z . (1) 

In (1) , A q is the complex coefficient and k ρq ( k zq ) is the trans- 

verse (longitudinal) wave number of the q -th BB. J v (.) is a Bessel 

function of first kind and order v ( v integer). Any longitudinal in- 

tensity pattern (LIP) of interest, | ψ ( ρ = 0 , z ) | 2 = | F ( z ) | 2 , may be 

specified by a judicious choice of the coefficients A q for v = 0 , as 

thoroughly exposed in the literature (notice that, for each choice, 

the diffraction limit must be respected). The resulting LIP may be 

shifted from the optical axis by increasing the order v [10,12] . Only 

forward propagating BBs are to be included in (1) . 

A scalar (and discrete) GFW may be constructed from (1) by su- 

perposing frozen waves of different orders. One then writes, with 

a slight change in notation with respect to previous works [15] , 

ψ GF W 

( ρ, φ, z ) = 

∞ ∑ 

v = −∞ 

N ∑ 

q = −N 

B v A q v J v 
(
k v ρq ρ

)
e i v φe −ik v zq z , (2) 

where B v = 1 / [ J v (. )] max are weighting coefficients and 

k v zq = Q v + 

2 π

L 
q, 

k v ρq = 

√ 

k 2 −
(
k v zq 

)2 
, 

A q v = 

1 

L 

∫ L 

0 

F v ( z ) e 
i 2 πL qz dz. (3) 

In (2) and (3) , the coefficients A qv for a specific value of v are 

calculated from the intended LIP | F v ( z )| 
2 which is to be formed 

along the range 0 ≤ z ≤ L (or, alternatively, −L/ 2 ≤ z ≤ L/ 2 ) at a ra- 

dial distance given approximately by the first non-null root of ∣∣∣J ′ v (ρ
√ 

k 2 − Q 

2 
v 

)∣∣∣, the prime indicating derivative with respect to 

the argument. For v = 0, the spot radius r 0 may be calculated from 

the relation r 2 o = 

(
k 2 − 2 . 4 2 

)
/Q 

2 
0 [12] . Examples of scalar GFWs can 

be found, e.g. in [15] . For our purposes and considering that all 

normalization issues may be transferred to F v ( z ), we henceforth 

take B v = 1 . 

2.1. Circularly symmetric vector GFWs 

The scalar GFW as described in (2) is of practical interest in 

light scattering experiments only when the paraxial approximation 

conditions are satisfied. This is because practical BBs with high 

half-cone angle are of an intrinsic vector nature. Therefore, solu- 

tions to the scalar wave equation must be reinterpreted as com- 

ponents or specific terms of such components of a vector field or 

potential. Non-paraxial beams must be expressed in vector form, 

and scalar fields like (2) must be incorporated into the GLMT with 

the due care. 

During the last years, scalar frozen waves have been introduced 

into the GLMT by taking the paraxial approximation for granted 

[8,22] . The scalar field, (1) , was taken to be a particular transverse 

electric field component, the vector description considering solely 

a corresponding transverse magnetic field. At least for single BBs, it 

has been shown that localized approximations are well suited for 

calculating the BSCs [28–33] , and one can expect this to hold also 

true for scalar frozen waves, thus providing analytic expressions 

for them while still preserving good numerical accuracy. However, 

once the BSCs are calculated, the GLMT automatically remodels the 

original light field so as to turn it into a true Maxwellian field. 

The final vector field, on the other hand, may not correctly corre- 

spond to the vector field expected when starting with vector BBs 

from the outset. In fact, discrepancies will be more pronounced for 

highly non-paraxial beams [32,33] . 

From the above considerations, it is of theoretical, numerical 

and practical interest to construct vector GFWs for light scattering 

calculations. This demands vector BBs as their constituents. In view 

of that, we ask ourselves how could we construct a vector GFW 

which, at the same time: (i) may be composed of non-paraxial vec- 

tor BBs; (ii) is well suited for theoretical, numerical and practical 

studies in the field of optical confinement and manipulation; (iii) 

can have its BSCs put into analytical and (iv) exact form. Davis and 

aplanatic vector GFWs appears as the most promising candidates. 

A general description of circularly symmetric Bessel beams is 

found in [26] . Four polarizations are considered, but here we shall 

focus our attention on two of them, i.e., on linear polarizations 

(1,0) and (0,1). The other two are linear combinations of those here 

considered, being reminiscent of circular polarization. The field 

components of a circularly symmetric vector GFW with polariza- 

tion (1,0) may be found by performing (i) a discrete superposition 

of vector BBs with the same order and polarization, thus gener- 

ating vector frozen waves of arbitrary but single order, and (ii) a 

sum of the previous frozen waves, each of which with a specific 

(and possibly different) order. One then finds, after some straight- 
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