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a b s t r a c t 

The Chord Length Sampling (CLS) algorithm is a powerful Monte Carlo method that models the effects 

of stochastic media on particle transport by generating on-the-fly the material interfaces seen by the 

random walkers during their trajectories. This annealed disorder approach, which formally consists of 

solving the approximate Levermore–Pomraning equations for linear particle transport, enables a consid- 

erable speed-up with respect to transport in quenched disorder, where ensemble-averaging of the Boltz- 

mann equation with respect to all possible realizations is needed. However, CLS intrinsically neglects 

the correlations induced by the spatial disorder, so that the accuracy of the solutions obtained by using 

this algorithm must be carefully verified with respect to reference solutions based on quenched disorder 

realizations. When the disorder is described by Markov mixing statistics, such comparisons have been 

attempted so far only for one-dimensional geometries, of the rod or slab type. In this work we extend 

these results to Markov media in two-dimensional (extruded) and three-dimensional geometries, by re- 

visiting the classical set of benchmark configurations originally proposed by Adams, Larsen and Pom- 

raning [1] and extended by Brantley [2]. In particular, we examine the discrepancies between CLS and 

reference solutions for scalar particle flux and transmission/reflection coefficients as a function of the 

material properties of the benchmark specifications and of the system dimensionality. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Several applications in nuclear science and engineering involve 

linear particle transport theory in stochastic media. Examples in- 

clude neutron diffusion in pebble-bed reactors or randomly mixed 

water–vapor phases in boiling water reactors [3–7] , and inertial 

confinement fusion [8–10] . Particle propagation in random media 

emerges more broadly in material and life sciences and in radiative 

transport [11–17] . Assuming that particles undergo single-speed 

transport with isotropic scattering, the angular particle flux ϕ( r, ω) 

for each physical realization of the system obeys the linear Boltz- 

mann equation 

ω · ∇ϕ + �( r ) ϕ = 

�s (r ) 

�d 

∫ 
ϕ(r , ω 

′ ) d ω 

′ + S. (1) 

Here r and ω denote the position and direction variables, respec- 

tively, �( r ) being the total cross section and S = S(r , ω ) the source 
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term. The quantity �d = 2 πd/ 2 / �(d/ 2) is the surface area of the 

unit sphere in dimension d , �( a ) being the Gamma function. The 

quantities �( r ), �s ( r ) and S ( r, ω) are in principle random variables, 

since the materials composing the traversed medium are assumed 

to be possibly distributed according to some statistical law. The 

physical observable of interest is typically the ensemble-averaged 

angular particle flux 〈 ϕ( r, ω) 〉 , or more generally some ensemble- 

averaged functional 〈 F [ ϕ] 〉 of the particle flux, namely, 

〈 ϕ(r , ω ) 〉 = 

∫ 
P (q ) ϕ 

(q ) (r , ω ) dq, (2) 

where ϕ( q ) ( r, ω) is the solution of the Boltzmann equation (1) cor- 

responding to a single realization q , and P(q ) is the station- 

ary probability of observing the state q for the functions �( q ) ( r ), 

�(q ) 
s (r ) and S ( q ) ( r, ω) [3,18] . 

Exact solutions for 〈 F [ ϕ] 〉 can be in principle obtained in the 

following way: first, a realization of the medium is sampled from 

the underlying mixing statistics; then, the linear transport equa- 

tion (1) corresponding to this realization is solved by either deter- 

ministic or Monte Carlo methods, and the physical observables of 

https://doi.org/10.1016/j.jqsrt.2017.09.014 

0022-4073/© 2017 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.jqsrt.2017.09.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2017.09.014&domain=pdf
mailto:andrea.zoia@cea.fr
https://doi.org/10.1016/j.jqsrt.2017.09.014


C. Larmier et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 204 (2018) 256–271 257 

interest F [ ϕ] are determined; a sufficiently large collection of real- 

izations is produced; and ensemble averages are finally taken for 

the physical observables. 

Reference solutions are very demanding in terms of computa- 

tional resources, especially if transport is to be solved by Monte 

Carlo methods in order to preserve the highest possible accuracy 

in solving the Boltzmann equation. In principle, it would be thus 

desirable to directly derive a single equation for the ensemble- 

averaged flux 〈 ϕ〉 . A widely adopted model of random media is 

the so-called binary stochastic mixing, where only two immisci- 

ble materials (say α and β) are present [3] . Then, by averaging 

Eq. (1) over realizations having material α at r , we obtain the fol- 

lowing equation for 〈 ϕα( r, ω) 〉 
[ ω · ∇ + �α] p α〈 ϕ α〉 = 

p α�s,α

�d 

∫ 
〈 ϕ α(r , ω 

′ ) 〉 d ω 

′ 

+ p β,α〈 ϕ β,α〉 − p α,β〈 ϕ α,β〉 + p αS α (3) 

where p i ( r ) is the probability of finding the material of index i 

at position r . Here p i, j = p i, j (r , ω ) represents the probability per 

unit length of crossing the interface from material i to material j 

for a particle located at r and travelling in direction ω. The quan- 

tity 〈 ϕi, j 〉 denotes the angular flux averaged over those realizations 

where there is a transition from material i to material j for a par- 

ticle located at r and travelling in direction ω. The cross sections 

�α and �s, α are those of material α. The equation for 〈 ϕβ ( r, ω) 〉 is 
immediately obtained from Eq. (3) by permuting the indices α and 

β . Excluding the special case of particle transport in the absence 

of scattering, we are thus led to an infinite hierarchy for 〈 ϕα〉 in 

Eqs. (3) . 

In order to explicitly derive the ensemble-averaged flux 〈 ϕα〉 , it 
is therefore necessary to introduce a closure formula, which will 

in general depend on the underlying mixing statistics [3,18,19] . 

The celebrated Levermore–Pomraning model assumes for instance 

〈 ϕ α,β〉 = 〈 ϕ α〉 for homogeneous Markov mixing statistics, with 

p i, j (r , ω ) = 

p i 
	i ( ω ) 

, (4) 

where 	i ( ω) is the mean chord length for trajectories cross- 

ing material i in direction ω [3] . Several generalisations of this 

model have been later proposed, including higher-order closure 

schemes [3,19] . 

In parallel, a family of Monte Carlo algorithms have been con- 

ceived in order to approximate the ensemble-averaged solutions 

to various degrees of accuracy [9,20,21] . Their common feature is 

that they allow a simpler treatment of transport in stochastic mix- 

tures (typically by neglecting the correlations on particle trajecto- 

ries induced by the spatial disorder), which might be convenient 

in practical applications. In this context, a prominent role is played 

by the so-called Chord Length Sampling (CLS) algorithm, which is 

supposed to solve the Levermore–Pomraning model for Markovian 

binary mixing [9,22,23] . The basic idea behind CLS is that the inter- 

faces between the constituents of the stochastic medium are sam- 

pled on-the-fly during the particle displacements by drawing the 

distances to the following material boundaries from a distribution 

depending on the mixing statistics. The free parameters of the CLS 

model are the average chord length 	i through each material and 

the volume fraction p i . Since the spatial configuration seen by each 

particle is regenerated at each particle flight, the CLS corresponds 

to an annealed disorder model, as opposed to the quenched dis- 

order of the reference solutions, where the spatial configuration 

is frozen for all the traversing particles. Generalization of these 

Monte Carlo algorithms including partial memory effects due to 

correlations for particles crossing back and forth the same mate- 

rials have been also proposed [9] . 

In order to quantify the accuracy of the various approxi- 

mate models, comparisons with respect to reference solutions are 

mandatory. For instance, although originally formulated for Markov 

statistics, CLS has been extensively applied also to randomly dis- 

persed spherical inclusions into background matrices, with appli- 

cation to pebble-bed and very high temperature gas-cooled reac- 

tors [20,21] , and several benchmark problems have been examined 

in two and three dimensions [20,21,24,25] . Some methods to miti- 

gate the errors between CLS and the reference solutions have been 

presented in the context of eigenvalue calculations, e.g., in [26] . 

For Markov mixing, a number of benchmark problems comparing 

CLS and reference solutions have been proposed in the literature 

so far [1,2,18,27,28] , with focus exclusively on 1 d geometries, ei- 

ther of the rod or slab type. Flat two-dimensional configurations 

have received less attention [10] . 

In a series of recent papers, some of the authors have 

provided reference solutions for particle transport in extruded 

two-dimensional and full three-dimensional random media with 

Markov statistics [29,30] , where the spatial disorder has been gen- 

erated by means of homogeneous and isotropic d -dimensional 

Poisson tessellations [31] . In this work, we will compare the 

CLS simulation results to the reference solutions for the classi- 

cal benchmark problem proposed by Adams, Larsen and Pomran- 

ing for transport in stochastic media [1] and revisited by Brant- 

ley [2] . The case of 1 d slab disorder has been considered previ- 

ously in the literature [1,2,18,27,28] and will be reported here for 

the sake of completeness. In addition, we will also consider 2 d ex- 

truded and full 3 d Markov mixing configurations. The physical ob- 

servables of interest will be the particle flux 〈 ϕ〉 , the transmission 

coefficient 〈 T 〉 and the reflection coefficient 〈 R 〉 : we will examine 

the discrepancies between reference and CLS simulation results as 

a function of the benchmark configurations and of the system di- 

mensionality d . In order to verify the consistency of the proposed 

results, the CLS calculations will be performed by using two inde- 

pendent Monte Carlo implementations of the CLS algorithm, in the 

Tripoli-4 ® code [32] and in the Mercury code [33,34] , respectively. 

This paper is organized as follows: in Section 2 we will recall 

the benchmark specifications that will be used in this work. In 

Sections 3 and 4 we will detail the methods and the algorithms 

that we have adopted in order to produce reference and CLS re- 

sults, respectively. Simulation findings will be illustrated and dis- 

cussed in Section 5 . Conclusions will be finally drawn in Section 6 . 

2. Benchmark specifications 

In order for the paper to be self-contained, we start by recall- 

ing the benchmark specifications that have been selected for this 

work, which are essentially taken from those originally proposed 

in [1,18] , and later extended in [2,27,28] . 

We consider single-speed linear particle transport through a 

stochastic binary medium with homogeneous Markov mixing. The 

medium is non-multiplying, with isotropic scattering. The geom- 

etry consists of a cubic box of side L = 10 (in arbitrary units), 

with reflective boundary conditions on all sides of the box ex- 

cept two opposite faces (say those perpendicular to the x axis), 

where leakage boundary conditions are imposed. 1 Two kinds of 

non-stochastic sources will be considered: either an imposed nor- 

malized incident angular flux on the leakage surface at x = 0 (with 

zero interior sources), or a distributed homogeneous and isotropic 

normalized interior source (with zero incident angular flux on 

the leakage surfaces). Following the notation in [2] , the bench- 

mark configurations pertaining to the former kind of source will be 

called suite I, whereas those pertaining to the latter will be called 

suite II. The material properties for the Markov mixing are entirely 

1 In [1,18] , system sizes L = 0 . 1 and L = 1 were also considered, but in this work 

we will focus on the case L = 10 , which leads to more physically relevant configu- 

rations. 
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