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a b s t r a c t 

Within the framework of generalized Lorenz–Mie theories and other light scattering theories such as the 

Extended Boundary Condition Method, the illuminating electromagnetic beam is described in terms of 

beam shape coefficients. We establish a darkness theorem in terms of the shape coefficients, allowing 

one to establish whether the beam intensity is zero on an axis (i.e. dark) or not. This theorem allows one 

to predict the existence of higher-order nonvortex Bessel beams. A proposal for similar studies concerning 

other types of beams is provided, as a possible extension of the present work. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The description of illuminating beams in generalized Lorenz–

Mie theories (GLMTs) [1] and other light scattering theories such 

as the Extended Boundary Condition Method (EBCM) [2] , relies 

on an encoding of the beam under study in terms of coefficients 

called Beam Shape Coefficients (BSCs). About twenty years ago, a 

paper was devoted to a discussion of partial wave expansions and 

properties of axisymmetric beams, relying on the Poynting vec- 

tor expressed in terms of BSCs [3] . That study, however, excluded 

the case of a class of beams, hereafter called dark beams, other- 

wise also called hollow beams [4] , in which the energy flow in 

the direction of propagation along an axis, more specifically the 

beam axis, is zero. Many kinds of beams have been the subject 

of a large number of investigations during the last two decades. 

These include vortex beams which are dark beams, such as higher- 

order Bessel beams, higher-order Laguerre–Gaussian beams [5–11] , 

which may be decomposed in terms of Hermite–Gaussian modes 

[5,6] , and higher-order Mathieu beams [4] . This paper provides a 

complement to [3] by focusing on dark beams. 

The body of this study is organized as follows. Section 2 estab- 

lishes a Darkness Theorem (DT) expressed in terms of BSCs, and 

corollary statements. In Section 3 , this DT is used to comment on 

higher-order Bessel beams and the (somewhat unexpected) exis- 

tence of higher-order Bessel beams that are not dark and thus have 
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components that do not exhibit any phase singularity on the axis. 

Section 4 is a conclusion. 

2. The darkness theorem 

We consider a monochromatic electromagnetic beam with the 

time dependence exp ( i ωt ) which is hereafter omitted, as is the 

normal practice. Let ( x , y , z ) be a Cartesian coordinate system and 

( r , θ , ϕ) the associated spherical coordinate system according to 

the standard definition. Let us assume that the beam is propagat- 

ing along the z -direction (usually from the negative z ’s to the pos- 

itive z ’s). The electric and magnetic field components along the r -, 

θ- and ϕ-directions are obtained by adding together TM- and TE- 

polarized solutions as in [12] , and Section 3.5, pp. 51-52 of [1] : 
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in which E 0 and H 0 are electric and magnetic field strengths re- 

spectively, ψ n denotes Riccati–Bessel functions with the argument 

kr ( k the wavenumber), a prime denotes a derivative of a function 

with respect to its argument, the coefficients c 
pw 

n (“pw ” standing 

for “plane wave”) are coefficients which occur in a natural way in 

the Bromwich formulation of Lorenz–Mie theory [13] : 
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Also, g m 

n,T M 

and g m 

n,T E 
are the usual TM- and TE-BSCs of GLMT, 

while τm 

n and πm 

n , with argument cos θ , are generalized Legendre 

functions defined according to: 
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in which P m 

n ( cos θ ) are the associated Legendre functions defined 

according to Hobson’s convention: 
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in which P n (cos θ ) are the Legendre polynomials. 

We now focus our interest on the behavior of the fields on the 

positive z -axis, θ = 0 . From the definitions of the generalized Leg- 

endre functions, we readily establish that: 

kπ k 
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n (1) = 0 , k � = 1 (11) 

π1 
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which defines the quantity �n . Furthermore, from the definition of 

the associated Legendre functions, we have: 

P 
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which defines the quantity 
n . The quantities �n and 
n are 

(−n )(n + 1) / 2 and 1, respectively. The symbols �n and 
n are 

however retained in the formula to obtain a better view of the in- 

volved symmetries. 

Therefore, when expressing the field components of Eqs. (1) –

(6) for θ = 0 , only the modes m = ±1 have to be retained for the 

angular components, and m = 0 for the radial components, leading 

to: 
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Let us remark that the ϕ-dependence of the radial components 

has been cancelled away, while the angular components still ex- 

hibit ϕ-dependence of the form exp ( i ϕ) and exp (−iϕ) . Now, let us 

consider a vector V expressed in terms of Cartesian and spherical 

coordinates: 

V x = V r sin θ cos ϕ + V θ cos θ cos ϕ − V ϕ sin ϕ (20) 

V y = V r sin θ sin ϕ + V θ cos θ sin ϕ + V ϕ cos ϕ (21) 

V z = V r cos θ − V θ sin θ . (22) 

Hence, “on the axis”, for θ = 0 : 

(V x ) θ=0 = (V θ ) θ=0 cos ϕ − (V ϕ ) θ=0 sin ϕ (23) 

(V y ) θ=0 = (V θ ) θ=0 sin ϕ + (V ϕ ) θ=0 cos ϕ (24) 

(V z ) θ=0 = (V r ) θ=0 . (25) 

Inserting Eqs. (14) –(19) into Eqs. (23) –(25) , we obtain the Carte- 

sian components in which the azimuthal angle ϕ no longer oc- 

curs: 
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