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a b s t r a c t 

The ray-effect is a major discretization error in the approximate solution method for the radiative trans- 

fer equation (RTE). To overcome this problem, the incident energy transfer equation (IETE) is proposed. 

The incident energy, instead of radiation intensity, is obtained by directly solving this new equation. Good 

numerical properties are found for the incident energy transfer equation. To show the properties of nu- 

merical solution, the collocation spectral method (CSM) is employed to solve the incident energy transfer 

equation. Three test cases are taken into account to verify the performance of the incident energy trans- 

fer equation. The result shows that the radiative heat flux obtained based on IETE is much more accurate 

than that based on RTE, which means that the IETE is very effective in eliminating the impacts of ray- 

effect on the heat flux. However, on the contrary, the radiative intensity obtained based on IETE is less 

accurate than that based on RTE due to the ray-effect. So, this equation is more suitable for those radia- 

tive heat transfer problems, in which the radiation heat flux and incident energy are needed rather than 

the radiation intensity. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Radiative heat transfer in absorbing, emitting, and scattering 

media is important in many scientific and engineering disciplines, 

and with the development of computer technology, numerical 

simulation has gradually become an important and useful tech- 

nique to study the radiative heat transfer. During the past two 

decades, lots of efforts have been focused on the numerical sim- 

ulation of radiative transfer process and most of analyzes are 

based on solving the radiative transfer equation (RTE). Up to now, 

many numerical methods have been developed to solve the RTE, 

such as the discrete ordinates method (DOM) [1] , finite volume 

method (FVM) [2,3] , finite element method (FEM) [4,5] , spectral 

element method (SEM) [6] , lattice Boltzmann method (LBM) [7] , 

and the spectral method (SM) [8–14] . As compared to the con- 

vection diffusion equation, the RTE can be considered as a spe- 

cial kind of convection-dominated Eq. [3] without diffusion terms. 

The convection-dominated property of an equation may cause non- 

physical oscillation in the numerical simulations. This type of in- 
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stability occurs in many numerical methods if no special treatment 

is taken. 

In order to reduce the instability caused by the convection- 

dominated trait of the RTE, the first order partial differential equa- 

tion (RTE) was analytically transformed into the second order par- 

tial differential equation, which is numerically stable. Currently, 

two different transformed equations have been proposed. One is 

the even-parity (EPRTE) formulation of the RTE, which is a second 

order differential equation of the even parity of radiative intensity, 

and was initially proposed in the field of neutron transport and has 

been used for decades [15–17] . Another one is the second order 

radiative transfer equation (SORTE) [18,19] , which is a second or- 

der differential equation of radiative intensity itself. However, be- 

cause the existence of the reciprocal of extinction coefficient in 

the equation, a singularity problem appears for the proposed sec- 

ond order equation in dealing with inhomogeneous media where 

some locations have very small or null extinction coefficient both 

for the EPRTE and the SORTE. To overcome the singularity problem 

of SORTE, a new form of second order radiative transfer equation 

(named MSORTE) is proposed by Zhao and Liu [20] . These works 

show obvious effect in eliminating the instability caused by the 

convection-dominated trait of RTE. 

http://dx.doi.org/10.1016/j.jqsrt.2017.06.014 
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Another important factor influencing the accuracy of the nu- 

merical results is called “ray-effect”, which is due to the discretiza- 

tion of the angular dependence. [3,21–26] . This effect arises from 

the approximation of a continuously varying angular nature of ra- 

diation by considering a specified set of discrete angular direc- 

tions, and is independent of spatial discretization practices. Usu- 

ally, when RTE or other transfer equations about intensity were 

adopted to simulate the radiative heat transfer problem in partic- 

ipating media, all the integral terms in those transfer equations, 

boundary conditions, incident energy and radiative heat flux are 

approximated by numerical integrals about the radiative inten- 

sity. Once such approximation is made, ray effect is encountered. 

Lots of efforts have been made to reduce the “ray-effect”. Lathrop 

[22] and Chai et al. [25] discussed the ray effect and false scat- 

tering in the DOM. Sakami et al. [27] analyzed the ray effect of 

the modified DOM. Coelho proposed limitary and nonsymmetri- 

cal high-order schemes for the DOM [28] , and also analyzed com- 

pensation of the ray effect and false scattering in the DOM. Rela- 

tively speaking, more attention has been paid to the ray effect and 

false scatting in the DOM than in other methods [29] . Articles [30–

34] discussed the ray effect in the traditional ray-tracing method 

[30] , discrete transfer method (DTM) [31] , finite volume method 

(FVM) [32,33] and the radiation element method by ray emission 

model REM2 [34] , etc., and modification measures were proposed. 

A very effective way to eliminate the “ray-effect” is solving the 

radiative integral transfer equations (RITEs) rather than RTE. Be- 

cause the angular dependency is completely eliminated, the RITEs, 

which are derived by integrating the RTE over all solid angles, 

are often solved to obtain the exact solutions of radiative transfer 

problems [35] . Since the numerical solution of RITEs often leads 

to dense matrices which may impose restrictions on the computa- 

tional memory and the execution time, the RITEs are rarely used in 

practical engineering problems, especially in multidimensional ge- 

ometries. However, inspired from RITEs, we can solve the equation 

by incident energy or radiative heat flux directly, instead of using 

radiative intensity (RTE, SORTE, etc.), the numerical error caused 

by “ray-effect” would be reduced or even eliminated. In fact, for 

a lot of radiation heat transfer problems, the numerical results we 

really need, are the incident energy and the radiative heat flux, not 

the radiative intensity. 

In the present work, the incident energy transfer equation 

(IETE) is deduced in Section 2 . The formulations of the collocation 

spectral method (CSM) for one-dimensional IETE are presented in 

detail in Section 3 . In Section 4 , three test cases of radiative heat 

transfer in semitransparent media are taken to verify the perfor- 

mance of the method. Finally the last section gives the conclusions. 

2. Formulation of the incident energy transfer equation (IETE) 

The incident energy is defined as 

G = 

∫ 
4 π

I(�) d� = 

∫ 2 π

0 

∫ π

0 

I(θ, ϕ) sin θd θd ϕ (1) 

In Eq. (1) , the bounds of the integral are known and fixed. So, 

for a known distribution of intensity I ( θ , ϕ), G is constant. To de- 

duce the incident energy transfer equation, a variable incident en- 

ergy is needed and should be defined at first. In this work, we de- 

fine the variable incident energy as: 

g(θ, ϕ) = 

∫ ϕ 

0 

∫ θ

0 

I(θ ′ , ϕ 

′ ) sin θ ′ d θ ′ d ϕ 

′ ϕ ∈ [0 , 2 π ] , θ ∈ [0 , π ] 

(2) 

Obviously, g ( θ , ϕ) means the incident radiation in any size solid 

angle and g ( π , 2 π ) = G, g (0, ϕ) = g ( θ , 0) = 0. Let μ= cos θ , Eq. (1) can 

be rewritten as: 

g(μ, ϕ) = 

∫ ϕ 

0 

∫ 1 

μ
I(μ′ , ϕ 

′ ) dμ′ dϕ 

′ , ϕ ∈ [0 , 2 π ] , μ ∈ [ −1 , 1] (3) 

Take the derivative of Eq. (3) with respect to ϕ and μ, we can 

get the expression of radiation intensity as: 

I(μ, ϕ) = −∂ 2 g(μ, ϕ) 

∂ ϕ∂ μ
(4) 

For one-dimensional problems, Eqs. (3) and ( 4 ) can be simpli- 

fied as follows: 

g(μ) = 2 π

∫ 1 

μ
I(μ′ ) dμ′ , μ ∈ [ −1 , 1] (5) 

I(μ) = − 1 

2 π

∂g(μ) 

∂μ
(6) 

Compared with the radiation intensity I , a notable 

characteristics of the variable incident energy g is that the 

distribution of g is always continuous whether I is continuous or 

discontinuous. Taking a one-dimensional problem as an example, 

it can be easily proved as follow: 

For any μ ∈ [ −1, 1], we have 

g( μ+ ) = 2 π

∫ 1 

μ+ 
I(μ′ ) dμ′ = lim 

�μ→ 0 

(
2 π

∫ 1 

μ+�μ
I(μ′ ) dμ′ 

)

= 2 π

∫ 1 

μ
I(μ′ ) dμ′ − lim 

�μ→ 0 

(
2 π

∫ μ+�μ

μ
I(μ′ ) dμ′ 

)
= g(μ) − lim 

�μ→ 0 
( 2 π I(μ + �μ)�μ) 

= g(μ) 

and 

g( μ−) = 2 π

∫ 1 

μ−
I(μ′ ) dμ′ = lim 

�μ→ 0 

(
2 π

∫ 1 

μ−�μ
I(μ′ ) dμ′ 

)

= 2 π

∫ 1 

μ
I(μ′ ) dμ′ + lim 

�μ→ 0 

(
2 π

∫ μ

μ−�μ
I(μ′ ) dμ′ 

)
= g(μ) + lim 

�μ→ 0 
( 2 π I(μ − �μ)�μ) 

= g(μ) 

Obviously, g ( μ+ ) = g ( μ) = g ( μ− ), therefore g ( μ) is continuous 

and the proof is completed. 

The governing equation for radiative heat transfer in absorbing- 

emitting and scattering medium in term of radiation intensity 

reads [36] : 

� · ∇I ( r, �) + ( k a + k s ) I ( r, �) 

− k s 

4 π

∫ 
�′ =4 π

�
(
�′ → �

)
I ( r, �) d�′ = k a I b ( r ) (7) 

with boundary conditions 

I ( r, �) = I S ( r, �) + ε I b ( r ) + 

ρ

π

∫ 
n ·�′ 

I 
(
r, �′ )d�′ (8) 

where all the symbols’ explanations are the same as in [37] 

Substituting Eq. (4) into Eq. (7) results in the following IETE: 

� · ∇ 

∂ 2 g(μ, ϕ) 

∂ ϕ∂ μ
+ ( k a + k s ) 

∂ 2 g(μ, ϕ) 

∂ ϕ∂ μ

− k s 

4 π

∫ 
�′ =4 π

�
(
�′ → �

)∂ 2 g(μ, ϕ) 

∂ ϕ∂ μ
d�′ = −k a I b ( r ) (9) 
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