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a b s t r a c t 

The majority of previous studies of the interaction of individual particles and multi-particle groups with 

electromagnetic field have focused on either elastic scattering in the presence of an external field or self- 

emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics 

to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to 

an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromag- 

netic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in 

maximally rigorous mathematical terms the general scattering–emission problem for a fixed object, and 

derive such fundamental corollaries as the scattering–emission volume integral equation, the Lippmann–

Schwinger equation for the dyadic transition operator, the multi-particle scattering–emission equations, 

and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computa- 

tion of the self-emitted component of the total field is completely separated from that of the elastically 

scattered field. The same is true of the computation of the emitted and elastically scattered components 

of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical 

computation of relevant optical observables. 

Published by Elsevier Ltd. 

1. Introduction 

The standard treatment of the scattering of electromagnetic 

waves by particles and multi-particle groups [1–20] has tradition- 

ally been based on “deterministic” macroscopic electromagnetics 

[21–24] and as such has not included explicitly the “stochastic”

phenomenon of thermal emission by bodies having non-zero ab- 

solute temperatures. In contrast, a large body of recent publica- 

tions (see, e.g., Refs. [25–39] and references therein) have focused 

on the study of (near-field) energy transfer in thermally emitting 

physical systems (including many-particle groups) using the semi- 

classical “fluctuational” electrodynamics (FED) [40–44] . However, 

there are practical situations wherein thermal emission processes 

are accompanied by elastic scattering of external electromagnetic 

radiation [36] . An important example of such mixed scenario is a 

cloud of particles in a planetary atmosphere which can both scat- 

ter the incident stellar light at near-infrared wavelengths as well 

as emit its own near-infrared radiation (see, e.g., Refs. [45–49] and 

references therein). Fortunately, by its very construct, FED is ideally 

suited to address such situations. 

Indeed, FED amounts to a reformulation of the macroscopic 

Maxwell equations (MMEs) wherein the usual “deterministic” vol- 
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ume charge density is supplemented by the volume density of the 

“stochastic” thermal electric current. The latter is caused by ran- 

domly fluctuating positions of elementary charges constituting a 

body at a non-zero absolute temperature. As a consequence, the 

modified MMEs describe simultaneously the processes of thermal 

emission as well as elastic scattering, albeit at the price of added 

mathematical complexity. 

The classical formalism based on the MMEs and developed 

for the study of elastic electromagnetic scattering by single- and 

multi-particle objects is well developed [1–10,12–20] . The next ob- 

vious step is to analyze in a systematic way how the main as- 

pects of this elastic-scattering formalism are modified by the in- 

clusion of thermal emission effects. This paper is intended to facili- 

tate this analysis by summarizing the main relevant axioms of FED, 

formulating in maximally rigorous mathematical terms the gen- 

eral scattering–emission problem for a fixed (multi-particle) object 

exposed to a quasi-polychromatic external field, and generalizing 

such fundamental corollaries of the MMEs as the volume integral 

equation, the Lippmann–Schwinger equation for the dyadic tran- 

sition operator, the Foldy equations, and the far-zone approxima- 

tion. Fundamentally, we show that the FED framework allows one 

to split the problem of finding the total electromagnetic field into 

the computation of the self-emitted field and the calculation of the 

elastically scattered field. Furthermore, we demonstrate that the 

same is true of the problem of computing second moments of the 
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total electromagnetic field. These results are expected to pave the 

way to the calculation of optical observables encountered in actual 

practical applications. 

2. Stochastic macroscopic Maxwell equations, constitutive 

relations, and boundary conditions 

Under the assumption that all media involved are nonmagnetic, 

the system of four stochastic MMEs for the instantaneous macro- 

scopic electromagnetic field at an arbitrary observation point r is 

as follows [44] : 

∇ · D (r , t) = ρ(r , t) , (1) 

∇ × E (r , t) = −μ0 
∂H (r , t) 

∂t 
, (2) 

∇ · H ( r , t ) = 0 , (3) 

∇ × H (r , t) = J (r , t) + J f (r , t) + 

∂D (r , t) 

∂t 
, (4) 

where we use the SI units, E ( r , t ) is the electric and H ( r , t ) the mag- 

netic field, D ( r , t ) is the electric displacement, ρ( r , t ) and J ( r , t ) are 

the macroscopic (free) volume charge density and current density, 

respectively, J f ( r , t ) is the volume density of the fluctuating elec- 

tric current, and μ0 is the magnetic permeability of a vacuum. All 

quantities entering Eqs. (1) –( 4 ) are real-valued functions of time t 

as well as of spatial coordinates. Implicit in the stochastic MMEs is 

the continuity equation 

∂ρ(r , t) 

∂t 
+ ∇ · J (r , t) + ∇ · J f (r , t) = 0 , (5) 

which is obtained by combining the time derivative of Eq. (1) with 

the divergence of Eq. (4) and making use of the vector identity 

∇ · (∇ × a ) ≡ 0 . (6) 

Typically Eqs. (1) –( 4 ) must be supplemented by appropriate 

constitutive relations. In the case of a time-dispersive medium, we 

have 

D ( r , t ) = 

∫ t 

−∞ 

d t ′ ε 
(
r , t − t ′ 

)
E 

(
r , t ′ 

)
, (7) 

J (r , t) = 

∫ t 

−∞ 

d t ′ σ (r , t − t ′ ) E (r , t ′ ) , (8) 

where ε is the electric permittivity and σ is the electric conduc- 

tivity. 

If two different continuous media with finite conductivity are 

separated by an interface S then it is postulated that the tangential 

components of the electric and magnetic field vectors are continu- 

ous across S : 

ˆ n × [ E 1 (r , t) − E 2 (r , t)] ≡ 0 , (9) 

ˆ n × [ H 1 (r , t) − H 2 (r , t)] ≡ 0 , (10) 

where 0 is a zero vector and ˆ n is a unit vector along the local 

normal to S . 

3. The Poynting theorem 

The system of axioms ( 1 )–( 4 ) and ( 7 )–( 10 ) of fluctuational elec- 

tromagnetics must provide a link to other physical quantities, in- 

cluding those directly measurable with suitable instrumentation. 

This is accomplished in part by using the Lorentz force postulate 

which states that if a differential volume element d V contains a 

total charge ρ( r , t )d V moving at a velocity v ( r , t ) then the force ex- 

erted by the electromagnetic field on that charge is 

d F = ρ(r , t) E (r , t)d V + μ0 ρ(r , t) v (r , t) × H (r , t)d V. (11) 

Upon scalar multiplying d F by v ( r , t ), we see that the magnetic field 

does no work, while for the local charge ρ( r , t )d V the rate of doing 

work by the electric field is ρ( r , t ) v ( r , t ) · E ( r , t )d V . Thus the total rate 

of work done by the electromagnetic field inside a finite volume V 

is given by 

Q = 

∫ 
V 

d 

3 r [ J (r , t) + J f (r , t)] · E (r , t) . (12) 

We now make use of Eqs. (2) and ( 4 ), the vector identity 

∇ · (a × b ) = b · (∇ × a ) − a · (∇ × b ) (13) 

with a = E and b = H , and the Gauss theorem ∫ 
V 

d 

3 r ∇ · A (r ) = 

∫ 
S 

d 

2 r A (r ) · ˆ n (r ) , (14) 

where S is the closed surface bounding V and ˆ n (r ) is a unit vector 

in the direction of the local outward normal to S . The result is the 

so-called Poynting theorem quantifying the energy budget of the 

volume V : 

−
∫ 

S 

d 

2 r S (r , t) · ˆ n (r ) = Q + 

d U 

d t 
, (15) 

where 

S (r , t) = E (r , t) × H (r , t) (16) 

is the Poynting vector and the term 

d U 

d t 
= 

∫ 
V 

d 

3 r 

[
E (r , t) · ∂D (r , t) 

∂t 
+ μ0 H (r , t) · ∂H (r , t) 

∂t 

]
(17) 

accounts for both the rate of change of the stored electromagnetic 

energy in V and the rate of energy dissipated by the material in V 

[24] . It is postulated that the left-hand side of Eq. (15) represents 

the net flow of electromagnetic energy entering V . 

4. Fourier decomposition 

Let us express all time-varying fields entering the stochastic 

MMEs in terms of time-harmonic components using the Fourier 

analysis: 

E ( r , t ) = 

∫ ∞ 

−∞ 

d ω E ( r , ω ) exp ( −i ωt ) (18) 

and similarly for H ( r , t ), D ( r , t ), ρ( r , t ), J ( r , t ), and J f ( r , t ), where i = 

(−1) 1 / 2 . The respective frequency spectra are given by the Fourier 

transforms 

E ( r , ω ) = 

1 

2 π

∫ ∞ 

−∞ 

d t E ( r , t ) exp ( i ωt ) , etc. (19) 

It is straightforward to verify that since the actual physical fields 

are real-valued, the frequency spectra satisfy the symmetry rela- 

tions 

E ( r , −ω ) = [ E ( r , ω ) ] 
∗
, etc., (20) 

where the asterisk denotes the complex-conjugate value. 

By virtue of the Fourier integral theorem, the frequency-domain 

system of the stochastic Maxwell equations and boundary condi- 

tions takes the form 

∇ · [ ε(r , ω) E (r , ω)] = − i 

ω 

∇ · J f (r , ω) , (21) 

∇ × E (r , ω) = i ω μ0 H (r , ω) , (22) 

∇ · H (r , ω) = 0 , (23) 
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