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a b s t r a c t 

We developed a fast method to determine size and refractive index of homogeneous spheres from the 

power Fourier spectrum of their light-scattering patterns (LSPs), measured with the scanning flow cy- 

tometer. Specifically, we used two spectral parameters: the location of the non-zero peak and zero- 

frequency amplitude, and numerically inverted the map from the space of particle characteristics (size 

and refractive index) to the space of spectral parameters. The latter parameters can be reliably resolved 

only for particle size parameter greater than 11, and the inversion is unique only in the limited range of 

refractive index with upper limit between 1.1 and 1.25 (relative to the medium) depending on the size 

parameter and particular definition of uniqueness. The developed method was tested on two experimen- 

tal samples, milk fat globules and spherized red blood cells, and resulted in accuracy not worse than the 

reference method based on the least-square fit of the LSP with the Mie theory. Moreover, for particles 

with significant deviation from the spherical shape the spectral method was much closer to the Mie-fit 

result than the estimated uncertainty of the latter. The spectral method also showed adequate results for 

synthetic LSPs of spheroids with aspect ratios up to 1.4. Overall, we present a general framework, which 

can be used to construct an inverse algorithm for any other experimental signals. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Light scattering is ubiquitous in nature and technology and is 

often the only or the most feasible approach to characterize parti- 

cles or particle systems [1] . Many characterization techniques ad- 

dress the particle ensemble as a whole, due either to a large scat- 

tering volume [2,3] or to the dense packing of individual compo- 

nents [4] . However, they are inherently ill-posed in trying to re- 

trieve the distribution of the ensemble over the particle charac- 

teristics [2,5] . Single-particle techniques show greater promise in 

detailed and robust characterization, at least in the controlled lab- 

oratory conditions [6,7] . 

Successful single-particle characterization requires three ingre- 

dients: measurement, simulation, and inversion. The typical mea- 

sured signals consist of a few scalar values [8,9] , an angle-resolved 

light-scattering pattern (LSP), [10,11] or a two-dimensional LSP 

[12,13] . The simulation part benefits from several well-established 

methods and open-source codes [4,14] . It is now easy to simulate 
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light scattering by almost any complex inhomogeneous particle, 

while the main complexity comes from the vastness of the mul- 

tidimensional space of possible particle characteristics [15,16] . The 

ultimate solution for the inverse problem would be a direct imag- 

ing (tomography) approach with no prior assumptions about the 

object. However, all existing attempts employ 2D LSPs for many 

orientations of the same particle and either assume weak scatter- 

ing (Rayleigh-Debye-Gans approximation) [17,18] or require phase 

of the scattered field to be measured as well [19,20] . Otherwise, 

one has to assume a particle shape model a priori, reducing the 

problem to determining several characteristics of this model. Such 

characterization methods can be tentatively divided into 3 broad 

categories: nonlinear regression, machine learning, and parametric 

(compression) techniques. 

Nonlinear regression is based on the direct comparison of ex- 

perimental signals (typically, LSPs) with simulated ones, using 

some norm of the difference (residual). Global minimization of 

this residual is a challenging task with computational complex- 

ity rapidly increasing with the number of shape characteristics 

[15,21] . This complexity can be partly concentrated into a one- 

time investment of computational power using precalculated (look- 

up) database of LSPs [22–24] . This makes it possible to apply 

http://dx.doi.org/10.1016/j.jqsrt.2017.04.034 

0022-4073/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.jqsrt.2017.04.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2017.04.034&domain=pdf
mailto:yurkin@gmail.com
http://dx.doi.org/10.1016/j.jqsrt.2017.04.034


A.V. Romanov et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 200 (2017) 280–294 281 

nonlinear regression routinely for particles without spherical sym- 

metry, such as red blood cells [25] , platelets [26] , and rod-shaped 

bacteria [27] . Moreover, in addition to the best-fit particle charac- 

teristics one can construct confidence intervals for these character- 

istics, i.e. evaluate the characterization errors [23,26,28] . 

Machine learning is an extremely broad class of methods, but 

we discuss only neural networks as the most representative ex- 

ample. Ideally, this approach should be able to automatically train 

itself on a large set (database) of LSPs with known characteris- 

tics and handle high-dimensional problems [29] . But, practically, 

its performance is hard to predict and it may require a lot of 

fine tuning. So far the neural networks has only been used for 

light-scattering characterization of spherical particles [30,31] and 

red blood cells [32] , as recently reviewed in [33] . Moreover, those 

methods do not use the whole LSP, but only a number of parame- 

ters derived from it. 

This compression of an experimental signal into several (two- 

three) parameters is central to the third class of characterization 

methods. The parameters are extracted either directly from the 

measured signal, e.g. the LSP [34,35] or the time-resolved signal 

[36] , or from its Fourier [37,38] or Gegenbauer [39] spectrum. Al- 

ternatively the amount of experimental data may originally be lim- 

ited to only a couple of numbers [8,9] . The specific way to process 

the signal parameters can vary a lot, but all parametric methods 

have very high speed in determining a small number of particle 

characteristics (typically, only the size and, sometimes, the refrac- 

tive index). They are also potentially more stable to instrumental 

noise and distortions, as well as to distortions of the optical model. 

The most popular parametric method is the spectral sizing [40–

42] , which is based on almost linear relation between the size of a 

sphere and characteristic frequency of its LSP or, equivalently, the 

position of the main peak in the Fourier spectrum of the LSP. In- 

terestingly, the spectral sizing of homogeneous spheres [43] can be 

extended with virtually no changes to estimation of diameters of 

leukocytes [44] and red blood cells [45] , although the accuracy of 

this estimation has not been thoroughly tested. Moreover, estima- 

tion of sphere refractive index has been proposed (without assess- 

ing the accuracy) in a limited range of size and refractive index, 

using the integral of the LSP as a second parameter [46] . 

Each of the three above classes has its pros and cons, and oc- 

cupies a certain application niche. This paper is devoted to the 

systematic development of the spectral method with the goal to 

fully characterize a homogeneous sphere, i.e. to solve the inverse 

Mie problem both quickly and robustly. For that we compress the 

whole measured LSP into two parameters of its power Fourier 

spectrum, which are further transformed into two characteristics of 

the particle. In Section 2 (and Appendix A ) we construct this char- 

acterization method starting with a LSP measured with the scan- 

ning flow cytometer (SFC) [11,43] . However, the provided details 

should enable one to repeat the whole procedure for any other 

experimental set-up and/or signal parameters. We also perform a 

detailed theoretical analysis of the underlying map and applica- 

bility (uniqueness) domain of the developed method. In Section 3 

we describe two sets of experimental measurements, namely milk 

fat globules and spherized red blood cells, and a set of synthetic 

data for spheroids. Those data, affected by both instrumental noise 

and optical-model distortions, are used for thorough testing of the 

characterization method in Section 4 . We conclude the paper in 

Section 5 . 

2. Spectral characterization method 

In this Section we construct a method to determine both di- 

ameter d and refractive index n of a spherical particle from the 

spectrum of its LSP. The main idea is to compress the whole LSP 

spectrum into two parameters, to describe the direct problem as a 

map of particle characteristics into those parameters ( G : R 

2 → R 

2 ), 

and to invert this map by constructing an interpolant. To abstract 

from specific wavelength of the incident light λ and medium re- 

fractive index n 0 we further describe the particle by its size pa- 

rameter x = πdn 0 / λ ( d – sphere diameter) and relative refractive 

index m = n / n 0 . We also limit ourselves to non-absorbing particles, 

i.e. assume real m . Moreover, we consider only m > 1, while the 

case of 0 < m < 1 is expected to be qualitatively similar. Allowing 

m to take values on both sides of unity will, most probably, break 

the uniqueness of the inverse problem in the whole range of par- 

ticle characteristics. 

2.1. Power spectrum and its parameters 

Let us define the specific form of a LSP spectrum. We start with 

the standard LSP, measured by the SFC: 

I ( θ ) = 

∫ 2 π

0 

d ϕ [ S 11 ( θ, ϕ ) + S 14 ( θ, ϕ ) ] , (1) 

where S is the Mueller scattering matrix [47] , θ and ϕ are the polar 

and azimuthal scattering angles, and S 14 ≡ 0 for ideal spheres. To 

keep the discussion manageable we further only consider the LSP 

in the range from θ1 = 10 ° to θ2 = 65 ° and apply the same spectral 

transformation as in [43] . Specifically, the LSP is multiplied by the 

Hanning window function 

w (θ ) = sin 

2 

(
π

θ − θ1 

θ2 − θ1 

)
, (2) 

and its power Fourier spectrum on this finite range is computed: 

P ( q ) = 

∣∣∣∣ 1 

θ2 − θ1 

∫ θ2 

θ1 

d θ w (θ ) I(θ ) exp ( −2 π i qθ ) 

∣∣∣∣
2 

, (3) 

which is normalized to be only weakly dependent on a partic- 

ular choice of the angular range. The practical calculations are 

performed with the fast Fourier transform using uniform dis- 

cretization over N = 256 intervals with further zero-padding up to 

M = 4096 points (to increase the spectral resolution): 

P ( q k ) = 

∣∣∣∣∣
1 

N 

N−1 ∑ 

j=0 

w ( θ1 + j�θ) I( θ1 + j�θ) exp 

(
−i 

2 π

M 

k j 

)∣∣∣∣∣
2 

, (4) 

where �θ = ( θ2 – θ1 )/ N and q k = k /( M �θ ). This procedure is illus- 

trated in Fig. 1 , where we also defined the spectral parameters: lo- 

cation ( L ) and amplitude ( A p ) of non-zero spectral peak and ampli- 

tude of zero frequency ( A 0 ). L can also be called the main (angular) 

frequency, while A 0 is the squared average value of the windowed 

LSP – similar to the parameter used in [46] . The peak parameters 

are determined by the quadratic fit with a window width of 15 

points (0.98 rad 

−1 ). While we conventionally use units of degree 

for θ , we employ the dimensional SI units (rad 

−1 ) for q and L and 

omit it further. Note also, that the Mueller matrix S and, hence, I 

and P are dimensionless. However, their scales (used in all figures) 

are unambiguously defined by Eqs. (1) –( 4 ). In other words, arbi- 

trary units are not used anywhere. 

Almost linear relation between x and L , with x / L roughly equal 

to π , is well-known [43,48] and can be understood using sim- 

ple arguments of diffraction gratings or the Rayleigh-Debye-Gans 

(RDG) approximation [47] . The choice of the second parameter (to 

deduce m as well) is less obvious. Relative peak amplitude A p / A 0 

has been briefly discussed previously [43,45] ; here we also con- 

sider both A 0 and A p separately. However, as shown in Section 4.1 , 

A 0 is the most robust (insensitive) with respect to experimental 

distortions of the LSP. Therefore, we base the production algorithm 

on this parameter and use it as a primary example in the following 

discussion. The corresponding analysis for other two parameters is 
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