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a b s t r a c t

Localized approximation procedures are efficient ways to evaluate beam shape coeffi-
cients of laser beams, and are particularly useful when other methods are ineffective or
inefficient. Several papers in the literature have reported the use of such procedures to
evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an
on-axis zeroth-order Bessel beam, we demonstrate that localized approximation proce-
dures are valid only for small axicon angles.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

When describing a laser beam for use in various light
scattering theories such as Generalized Lorenz–Mie The-
ories (GLMTs), e.g. [1] and the Extended Boundary Condi-
tion Method (EBCM), e.g. [2,3], electric and magnetic fields
are expanded in terms of a complete set of Vector Sphe-
rical Wave Functions (VSWFs). The coefficients of such
expansions are proportional to what are called the beam
shape coefficients (BSCs) gmn;TM and gmn;TE [4], TM for the
Transverse Magnetic polarization and TE for the Trans-
verse Electric polarization. They reduce to simpler
expressions called special BSCs gn in the case of an on-axis
axisymmetric beam, and eventually to a simple constant
phase term in the case of a plane wave [5]. One of the
issues when dealing with any type of beam is the eva-
luation of these coefficients.

Since the pioneering papers of Durnin [6,7], there has
been increasing interest in scattering by Bessel beams, and
therefore in the computations of their BSCs. Cizmar et al.
[8] developed a non-paraxial (vectorial) description of the
Bessel beam electric and magnetic fields using an angular
spectrum of plane waves approach, taking the form of a
quadrature over an azimuthal angle β, with closed form
expressions for the spectral components. In the case of a
rotationally symmetric beam, i.e. when there is no
dependence on β, the fields can be expressed in closed
form in terms of cylindrical coordinates ðz; ρ;φÞ. The BSCs
can be obtained by double quadratures of the fields over
angular spherical coordinates, which is the original
method used to evaluate the BSCs in the GLMT in spherical
coordinates, e.g. [9] and references therein, and [1, pp. 40–
47] including a comparison between the formulations of
Gouesbet et al. [10,11] and of Barton et al. [12,13]. These
double quadratures reduce to single quadratures in the
case of a zeroth-order Bessel beam [8], while numerical
evaluations of the double quadratures are available from
Preston et al. [14]. Milne et al. [15] studied the transverse
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particle dynamics in a zeroth-order Bessel beam, and
similarly indicated the possible simplification of the BSCs
from double quadratures to single quadratures. But, owing
to the time-consuming character of this integration, they
preferred to rely on a geometrical optics model.

These results were improved upon by Taylor and Love
[16] who succeeded in deriving an analytic result for the
BSCs that does not require the numerical evaluation of any
integral. Chen et al. [17,18] afterward extended these
results to the case of Bessel beams of arbitrary order and
polarization, with an application to optical binding. Similar
analytic expressions for BSCs were obtained by Ma and Li
[19] who studied the scattering of an unpolarized Bessel
beam by a sphere. Wang et al. [20] dealt with a dynamical
and phase-diagram study on stable optical pulling force in
zeroth- and higher-order Bessel beams, Lock [21] dealt
with a discussion of the angular spectrum and localized
model of Davis type beams, including a discussion of
zeroth-order Bessel beams both on-axis and off-axis, and
Song et al. [22] dealt with optical forces on a large sphere
illuminated by a zeroth-order Bessel beam and with
comparisons between the ray optics method and gen-
eralized Lorenz–Mie theory.

In the case of Gaussian beams, described by electric and
magnetic field expressions which do not satisfy Maxwell's
equations [23,24], the most efficient method for evaluating
the BSCs has been the localized approximation, which may
be presented under different formulations which describe
fields that are closely similar to the original beam, and
satisfy Maxwell's equations. A review of localized
approximations is available from [25], which is com-
plemented by [26,27]. The most general and complete
rigorous justification of localized approximations for
evaluating the beam fields in spherical coordinates using
the N-beam approach is available from [28] which, in
contrast with earlier justifications which were devoted to
Gaussian beams, is valid for “arbitrary shaped beams”. This
topic was also pursued using the angular spectrum of
plane waves in [21]. These arbitrary shaped beams contain
the phase factor expð7 ikzÞ for propagation along the z-
axis. This does not imply that the speed of the laser beam
is the speed of light c. It is actually smaller than c [29].
Unfortunately, Bessel beams do not fall under the afore-
mentioned class of “arbitrary shaped beams” considered in
[28]. This is because their propagation term is
expð7 ikz cosαÞ, with α being the half-cone or axicon
angle. They have an angular spectrum of plane waves, all
tilted by the same angle α with respect to the z-axis, and
therefore possess a speed along this axis which is equal to
c cos α.

Several papers examining scattering by a Bessel beam
used a localized approximation (more specifically an
integral localized approximation variant, see [27] for
details regarding the terminology). Ambrosio and Her-
nandez described zeroth-order [30] and higher-order
Bessel beams [31] by using this approximation, with
applications to optical trapping. Qu et al. [32] dealt with
the electromagnetic scattering of a zeroth-order Bessel
beam by a uniaxial anisotropic sphere located in an off-
axis Bessel beam, Li et al. [33] dealt with the analysis of
radiation pressure force exerted on a biological cell

induced by a high-order Bessel beam, Li et al. [34] dealt
with the scattering of an axicon-generated Bessel beam by
a sphere, and Chen et al. [35] dealt with the scattering of a
zeroth-order Bessel beam by a concentrically coated
sphere.

The use of localized approximations for Bessel beams is
in practice valid when the axicon angle α is relatively small,
as is well exemplified in Figs. 2a–b of Li et al. [34] who
compared original expressions in terms of coordinates and
reconstructed expressions using the localized BSCs for
electric amplitudes, and reconstructed the spatial dis-
tributions in their Figs. 3a–i, with an axicon angle of 1°.
However, it is important to be aware that significant errors
may occur in the localized approximation of a Bessel beam
when the axicon angle becomes sufficiently large. The
origin of this fact relies on the presence of cos α in the
propagation term of Bessel beams, which does not occur in
the case of the expð7 ikzÞ-type beams considered in [28].
The deleterious consequence of the cos α-term is well
illustrated in [36] in which it is shown that the N-beam
procedure for deriving the localized approximation that
was successfully used in [28] for expð7 ikzÞ-type fails for
Bessel beams.

This paper is organized as follows. Section 2 deals with
rigorous closed form expression for the BSCs of a zeroth-
order on-axis Bessel beam which is given by Eq. (9). Sec-
tion 3 derives localized approximation to these BSCs,
which is given by Eq. (26). Section 4 compares both
expressions and numerically exhibits the fact that loca-
lized results increasingly depart from the rigorous
expressions as the axicon angle increases. Section 5 pre-
sents a qualitative discussion of these results, and also
serves as a conclusion.

2. Rigorous beam shape coefficients in closed form

Let us consider a Cartesian coordinate system OBuvw
attached to the Bessel beam, with a time dependence of
the form expð� iωtÞ which is opposite to the convention
usually used in GLMTs. The beam propagates from nega-
tive w to positive w. We then rely on Eqs. (49a)–(49f) of
[21] describing, as an example, the Davis symmetrized
fields of a zeroth-order Bessel beam, which are equivalent
to Eqs. (14)–(19) from Mishra [37]. The electric field
components Ei and magnetic field components Hi,
i¼ u; v;w, are:

Eu ¼ E0
1
2

1þ cos α� sin 2α

2

 !
J0ðkρ sin αÞ

(

þ sin 2α

4
cos ð2φÞJ2ðkρ sin αÞ

)
expðikw cos αÞ ð1Þ

Ev ¼ E0
sin 2α

4
sin 2φð ÞJ2ðkρ sin αÞexp ikw cos αð Þ ð2Þ

Ew ¼ � iE0
sin α

2
ð1þ cosαÞ cosφJ1ðkρ sin αÞexp ikw cos αð Þ

ð3Þ
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