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a b s t r a c t

Computational modelling has made many useful contributions to the field of optical tweezers. One as-
pect in which it can be applied is the simulation of the dynamics of particles in optical tweezers. This can
be useful for systems with many degrees of freedom, and for the simulation of experiments. While
modelling of the optical force is a prerequisite for simulation of the motion of particles in optical traps,
non-optical forces must also be included; the most important are usually Brownian motion and viscous
drag. We discuss some applications and examples of such simulations. We review the theory and
practical principles of simulation of optical tweezers, including the choice of method of calculation of
optical force, numerical solution of the equations of motion of the particle, and finish with a discussion of
a range of open problems.
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1. Introduction

The optical forces in optical tweezers result from the interac-
tion of the trapping beam with the trapped particle. Thus, the

computation of optical forces and torques is a light scattering
problem. While this is a challenging problem, and much work
remains to be done, there has been a great deal of progress, and for
many situations, it is straightforward to obtain the optical force
and torque. However, if we wish to simulate the behaviour of
particles within optical tweezers, the optical force is only one of
the necessary ingredients. We will discuss some applications and
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examples of such simulations, and review the theory and princi-
ples of simulation of optical tweezers.

1.1. The need for simulations

Since it is usually straightforward to calculate the optical force
on a trapped particle, it is possible to characterise the trap by
determining the optical force as a function of particle position (and
orientation if the particle is non-spherical). At first glance, this
appears to provide complete information about the trap, and we
might ask what need there is to perform simulations. There are
two main answers to this question. First, it is not always feasible to
generate such a force map of the trap. Second, while a force map of
this type does contain complete information about the trap in
some sense, it doesn't directly answer all questions we might have
about the trap. In particular, the dynamics of a particle in the trap
depend on its interaction with the surrounding environment as
well as the optical force. The dominant elements of that interac-
tion are often Brownian motion and viscous drag, but other types
of interaction can also be important. Where the dynamics them-
selves are the object of study (e.g., escape probabilities, synchro-
nised dynamics of trapped particles, etc.) or have a major impact
on the behaviour of interest (e.g., in the simulation of measure-
ments to test calibration procedures), it is necessary to take these
non-optical forces into account.

The first of these cases results from situations with many degrees
of freedom. To map the force as a function of position with useful
(but not high) resolution typically requires about 30 steps along each
degree of freedom (giving about 10 steps as forces change from zero
to a maximumvalue). If it takes 1 second to calculate the optical force
at a single position, this will give required computational times for
different degrees of freedom (DOF) of:

1 DOF Example: calculating axial and/or radial force–position
curves; finding equilibrium position along beam axis,
and axial and radial spring constants. 30 to 60 points.
Time: 0.5–1 minute.

2 DOF Example: mapping force for a spherical particle in a ro-
tationally symmetric trap (e.g., circularly polarised
Gaussian beam). ≈30 10002 points. Time: E15 minutes.

3 DOF Example: mapping force for a spherical particle in a trap
lacking rotational symmetry (e.g., linearly polarised
Gaussian beam). ≈30 30, 0003 points. Time: E8 hours.

4 DOF Example: mapping force for a rotationally symmetric
non-spherical particle in a rotationally symmetric trap.

≈30 104 6 points. Time: E10 days.
5 DOF Example: mapping force for a rotationally symmetric

non-spherical particle in a trap lacking rotational sym-
metry; two spherical particles in a rotationally symmetry
trap. ≈ ×30 3 105 7 points. Time: E1 year.

6 DOF Example: mapping force for a non-spherical particle
lacking rotational symmetry in a trap lacking rotational
symmetry; two spherical particles in a trap lacking ro-
tational symmetry. ≈30 106 9 points. Time: E30 years.

Additional particles will add 2–3 translational degrees of free-
dom (depending on the symmetry of the trap) and 0, 2, or 3 ro-
tational degrees of freedom (depending on the symmetry of the
particle). If the trapping beam varies in time, this adds another
degree of freedom, although if the time variation consists of
switching between a small number of fixed positions, this will
only multiply the number of required calculations and the com-
putational time by a small number.

The above times do not take parallelisation of the calculations
into account—this can readily bring one or two more degrees of

freedom into feasibility. However, even with parallelisation, we
will still rapidly run into the limits of practicality due to the ex-
ponential growth of computational time with the number of de-
grees of freedom. Therefore, it can be necessary to resort to si-
mulation to obtain information we might prefer to find from a
complete force map. This will typically involve non-spherical
particles or multiple particles.

On the other hand, even if it is feasible to calculate a complete
optical force map for the trap, we might still wish to perform si-
mulations. In particular, a force map doesn't contain information
about the dynamics of a particle in the trap. While the optical force
—which the force map provides—is a key factor in the dynamics of
the particle, the particle is also influenced by other forces: viscous
drag, thermal forces (driving Brownian motion), and possibly in-
teraction with other parts of the environment. If the dynamics are
of interest, we can use simulation to uncover it.

To explore the dynamics of a particle in the trap, it can be
possible, and advantageous, to use a pre-calculated force map. If it
is feasible to calculate a complete force map with reasonable re-
solution, the optical force at any position can be found by inter-
polating between the points in the force map where the forces are
known. This interpolation can be performed very quickly (the
computational implementation should avoid copying the force
map to perform the interpolation). The required accuracy of the
interpolated force will determine the minimum resolution of the
force map. This resolution of the force map, along with the re-
quired spatial extent of the simulation, determines the number of
points required in the force map. If this exceed the number of time
steps required in the simulation, then direct calculation will be
more efficient. However, often the number of time steps will be
much greater, and using a force map to find the optical force will
be much more efficient. This will often be the case for optical traps
with 2 or 3 degrees of freedom. An extreme case of this is where
the particle remains very close to its equilibrium position, and the
trap can be represented in terms of a spring constant (which will
generally be a diagonal tensor, with different spring constants in
different directions, or even a non-diagonal tensor).

1.2. Applications of simulations

There are many possible applications of this. Most fall into
three broad categories: simulations to understand experiments
that have been performed, simulations to predict the results of
potential experiments, and simulations to explore optical traps
and the dynamics of trapped particles in ways that are not ac-
cessible experimentally.

The first of these, simulations of experiments that have been
performed, can be simply seeing if a simulated experiment mat-
ches measured results. This can be very useful if the experimental
results are surprising. If agreement between simulated and mea-
sured results is obtained, the physics and models used in the si-
mulation adequately model reality. If agreement is not obtained,
then the model is either incomplete (e.g., physics not included
significantly affect the measured results) or elements of the model
are incorrect (invalid approximations, mathematical errors, in-
correct implementation in software, numerical errors).

For example, [79] observed the appearance of a third trapping
equilibrium position as two optical traps were moved close to-
gether. In this case, simulations were valuable for confirming that
the third trap can be produced in this two-beam configuration,
even if the two trapping beams are not mutually coherent, i.e., the
third trap doesn't depend on interference between the two trap-
ping beams.

[33] used a combination of experiment and simulation to ex-
plore the transition from overdamped motion to underdamped
motion as the size of trapped particles was reduced.
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