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a b s t r a c t

The Gaussian–Legendre, Gaussian–Lobatto, Gaussian–Chebyshev and Gaussian quadrature (GQ) with
different moment powers have been investigated by applying them into the four-stream solar and in-
frared radiative transfer algorithms. For solar radiative transfer, the Gaussian–Chebyshev and GQ with
moment power m¼0 show relatively accurate results compared to other types of 2GQ in a single-layer
scattering medium. In a real atmospheric profile including gaseous transmission, Gaussian–Chebyshev
and GQ with moment power m¼0 are comparable in accuracy for cloud heating rate. GQ with moment
power m¼0 produces more accurate results in the upward flux at the top of the atmosphere, while
Gaussian–Chebyshev produces more accurate results in the downward flux at the surface. These results
have been confirmed in evaluations by using satellite observation data. For infrared radiative transfer, the
GQ with moment powers =m 0, 2, 4 show relatively accurate results in effective emissivity for a single-
layer scattering medium. In a real atmospheric profile, the GQ with moment powers m¼0 and m¼2
show superior accuracy in heating rate and flux. In addition, the evaluations using satellite observation
data also show that the accuracy of GQ with moment powers m¼0 and m¼2 is comparable. Both the
schemes are the best candidates for the four-stream radiation algorithms.

& 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Gaussian quadrature (GQ) is an accurate and effective method
to deal with the definite integral of a function, which is usually
illustrated as a weighted sum at specified points of function values.
GQ was first time applied to solve radiative transfer equations
(RTE) by Chandrasekhar [1] and consequently a method called
discrete ordinates method (DOM) was created. In RTE, the integral
term to deal with the scattering effect can often be decomposed by
using GQ [2–4].

The physical process of radiative transfer is described by a
differential–integral equation. The integral part represents the
multiple-scattering into a certain direction. In order to solve the
radiative transfer equation, the differential–integral equation has
to be converted to a pure differential equation. In the DOM, the
integral part can be decomposed and resolved by GQ.

In solar radiation, the two-stream approximation [5], which
corresponding to 1-node GQ, has been widely used in current
climate models [6]. However, the cloud heating from the two-

stream approximation might have been underestimated by as
much as 10% [7–10]. Therefore, the four-stream approximation
[3,11–17], which corresponds to a 2-node GQ in the integral in-
tervals of [�1 0] and [0 1] respectively, is developed. The single-
layer analytical solutions of the four-stream approximations have
been found [3,12,14,16]. Recently, Zhang et al. [9] have derived an
adding method for four-stream discrete ordinates method (DOM)
for solar radiation, referred as 4DDA, which is based on Chan-
drasekhar's invariance principle [1].

In infrared radiation, the scattering effect is very weak. In most
current climate models, a method of absorption approximation
(AA) is widely used [6], in which the scattering process is ne-
glected. The diffuse transmission in AA can be calculated by using
a diffusivity factor of 1.66 [18,15]. Li [19] has approved that the
accurate diffusivity factor should be =e 1.648721. The proof was
based on the GQ integration of moments. Studies have shown that
the AA scheme can cause an overestimation of outgoing longwave
radiation in climate simulations with errors up 4 W/m2 [20,21,15].
In order to include the infrared scattering effect, the two-stream
approximation has been applied to the infrared radiation [21].
Compared to AA, the two-stream method is more accurate, how-
ever, as shown in [20,15], the relative errors of emissivities by
using two-stream method can be over 10% under a thin optical
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thickness condition. This indicates that a higher node Gaussian
quadrature is needed to improve the accuracy. The four-stream
analytical solution to the infrared RTE has been found [22]. Based
on Chandrasekhar's invariance principle [1], Zhang et al. [23] have
derived 4DDA to deal with layer connections in the infrared ra-
diative transfer.

There are many types of GQ. In early times, the Gauss–Legendre
quadrature was mainly used for RTE in the atmospheric radiation
community [1–3]. Later, the so-called double GQ was introduced
[4,22]. It is shown that the double GQ can produce more accurate
results compared to Gauss–Legendre quadrature. This indicates
that the GQ scheme plays a key role in radiative transfer process.
When a discrete ordinates type of solution to RTE is found, the
accuracy relies only on the choice of GQ schemes. However, other
types of GQ such as the Gauss–Chebyshev quadrature, Gauss–Lo-
batto quadrature, Gaussian integration of moments, etc., have
rarely been applied in RTE. Most types of GQ have an integral in-
terval of [ − ]1, 1 , which matches with the scattering integral in-
terval of RTE. The application of GQ to RTE is straightforward.
However, the Gaussian integration of moments cannot be directly
applied to solve RTE because its integral interval is [ ]0, 1 [24]. In
order to apply it to RTE, the integral interval for Gaussian in-
tegration of moments has to be extended. The so-called double GQ
is actually a specific example of the Gaussian integration of mo-
ments with moment equal to zero. The Gaussian integration of a
higher moment has not been investigated yet.

Given that there are various types of GQ, this study mainly fo-
cuses on the comparison of different types of GQ in the solar and
infrared RTE. We will focus on the schemes of 2-node GQ (denoted
as 2GQ), which match with the four-stream radiative transfer dis-
crete ordinates solution. The four-stream radiative transfer algo-
rithm will become more and more popular in climate models, as
computing speed increases. In the following Section 2, several types
of Gaussian integration are discussed, and the integral interval for
Gaussian quadrature of moments is extended. In Section 3, different
types of GQ are applied to the solar radiative transfer. The accuracy
of four-stream approximation by using different types of 2GQ is
systematically investigated by comparing with 128-stream discrete
ordinates calculations. In Section 4, different types of GQ are applied
to the infrared radiative transfer. The accuracy of four-stream ap-
proximation by using different types of 2GQ is systematically in-
vestigated by comparing with δ-128-stream discrete ordinates
scheme (δ-128S). In the final section, a summary is given.

2. Different types of Gaussian quadrature

2.1. Gauss–Legendre quadrature

The Gauss–Legendre quadrature states [24]:

∫ ∑μ μ μ( ) = ( )
( )− =−
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i i
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1

where μi is the abscissas and ai is the weight. μi is symmetrical in
the intervals [ − ]1, 0 and [ ]0, 1 with μ μ= −−i i. For 2-node
Gaussian-Legendre quadrature, referred as 2GQ(Legendre), the
values of μi and ai are listed in Table 1.

2.2. Gauss–Chebychev quadrature

The Gauss–Chebychev quadrature states [25]:
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where μi is the abscissas and =ai n
1 . For 2-node Gaussian–Che-

bychev quadrature, referred as 2GQ(Chebychev), the values of μi

and ai are listed in Table 1.

2.3. Gauss–Lobatto quadrature

There is an interesting characteristic for Gauss–Lobatto quad-
rature with abscissa μ = −− 1n and μ = 1n for any values of n [26].
The Gauss–Lobatto quadrature states:
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where μi is the abscissas and ai is the weight. For 2-node Gauss–
Lobatto, referred as 2GQ(Lobatto), the values of μi and ai are listed
in Table 1.

2.4. Gaussian integration of moments

By n-node GQ, the integration of moment m is evaluated by
[24]
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where xi is the abscissas; wi is the weight. In (4), the values of xi
and wi for ≤m 7 are shown in [24]. For higher moments of >m 7,
xi and wi are calculated by Li [19]. In [19], the high moment result
has even been extended to → ∞m .

The Gaussian integration of moments cannot be applied to
solve the radiative transfer equation directly due to the limitation
of integral interval. By substitution of μ = +xm 1,

∫ ∫

∑

∑

μ μ μ

μ

( ) = ( + ) ( )

= ( + ) ( )

= ( )
( )

=

+

=

f d m x f dx

m w f x

a f

1

1

,
5

m

i

n

i
m

i

n

i i

0

1

0

1

1

1

1

where

μ = = ( + ) ( )+x a m wand 1 . 6i i
m

i i
1

For even number of = …m 0, 2, 4, , by substituting μ = ( − ) +x m 1,
we obtain

Table 1
Some types of abscissa and weight factors for 2-node Gaussian integration in the
paper.

Gaussian integration μ1,μ2 a1,a2

Legendre 0.3399810 0.6521452
0.8611363 0.3478548

Chebychev 0.7946545 0.5000000
0.1875925 0.5000000

Lobatto 1.0000000 0.1666667
0.4472136 0.8333333

m¼0 0.2113248 0.5000000
0.7886751 0.5000000

m¼2 0.0947241 0.3023577
0.6756462 0.6976424

m¼4 0.0693003 0.2454125
0.6366946 0.7545875

→ ∞m 0.0329023 0.1464466
0.5566679 0.8535534
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