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a b s t r a c t

Particle transport in random media obeying a given mixing statistics is key in several applications in
nuclear reactor physics and more generally in diffusion phenomena emerging in optics and life sciences.
Exact solutions for the ensemble-averaged physical observables are hardly available, and several ap-
proximate models have been thus developed, providing a compromise between the accurate treatment
of the disorder-induced spatial correlations and the computational time. In order to validate these
models, it is mandatory to use reference solutions in benchmark configurations, typically obtained by
explicitly generating by Monte Carlo methods several realizations of random media, simulating particle
transport in each realization, and finally taking the ensemble averages for the quantities of interest. In
this context, intense research efforts have been devoted to Poisson (Markov) mixing statistics, where
benchmark solutions have been derived for transport in one-dimensional geometries. In a recent work,
we have generalized these solutions to two and three-dimensional configurations, and shown how di-
mension affects the simulation results. In this paper we will examine the impact of mixing statistics: to
this aim, we will compare the reflection and transmission probabilities, as well as the particle flux, for
three-dimensional random media obtained by using Poisson, Voronoi and Box stochastic tessellations.
For each tessellation, we will furthermore discuss the effects of varying the fragmentation of the sto-
chastic geometry, the material compositions, and the cross sections of the background materials.

& 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Linear transport in heterogeneous and randommedia emerges in
several applications in nuclear reactor physics, ranging from the
analysis of the effects of the grain size distribution in burnable
poisons (especially Gadolinium) and of Pu agglomerates in MOX fuel
pellets, the quantification of water density variations in concrete
structures and in the moderator fluid during operation (e.g., steam
flow in BWRs) or accidents (e.g., local boiling in PWRs), the as-
sessment of the probability of a re-criticality accident in a reactor
core after melt-down (corium), or the investigation of neutron dif-
fusion in pebble-bed reactors [1–3]. The spectrum of applications of
stochastic media is actually far reaching [4–7], and concerns also
inertial-confinement fusion [8], light propagation through en-
gineered optical materials [9–11], atmospheric radiation transport
[12–14], tracer diffusion in biological tissues [15], and radiation
trapping in hot atomic vapours [16], only to name a few.

The stochastic nature of particle transport stems from the
materials composing the traversed medium being randomly

distributed according to some statistical law: thus, the total cross
section, the scattering kernel and the source are in principle ran-
dom fields. Particle transport theory in random media is therefore
aimed at providing a description of the ensemble-averaged an-
gular particle flux φ〈 ( )〉r v, and related functionals. For the sake of
simplicity, in the following we will focus on mono-energetic
transport in non-fissile media, in stationary (i.e., time-in-
dependent) conditions. However, these hypotheses are not re-
strictive, as described in [1].

A widely adopted model of random media is the so-called binary
stochastic mixing, where only two immiscible materials are present
[1]. In principle, it is possible to formally write down a set of coupled
linear Boltzmann equations describing the evolution of the particle
flux in each immiscible phase. Nonetheless, it has been shown that
these equations form generally speaking an infinite hierarchy (exact
solutions can be exceptionally found, such as for purely absorbing
media), so that in most cases it is necessary to truncate the infinite
set of equations with some appropriate closure formulas, depending
on the underlying mixing statistics. Perhaps the best-known of such
closure formulas goes under the name of the Levermore-Pomraning
model, initially developed for homogeneous Markov mixing statistics
[1,17]. Several generalisations of this model have been later
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proposed, including higher-order closure schemes [1,18]. Along the
development of deterministic equations for the ensemble-averaged
flux, Monte Carlo methods have been also proposed, such as the
celebrated Chord Length Sampling [3,19–21]. The common feature of
these approaches is that they allow a simpler, albeit approximate,
treatment of transport in stochastic mixtures, which might be con-
venient in practical applications where a trade-off between compu-
tational time and precision is needed [22,23].

In order to assess the accuracy of the various approximate
models it is therefore mandatory to compute reference solutions
for linear transport in random media. Such solutions can be ob-
tained in the following way: first, a realization of the medium is
sampled from the underlying mixing statistics (a stochastic tes-
sellation model); then, the linear transport equations corre-
sponding to this realization are solved by either deterministic or
Monte Carlo methods, and the physical observables of interest are
determined; this procedure is repeated many times so as to create
a sufficiently large collection of realizations, and ensemble avera-
ges are finally taken for the physical observables.

For this purpose, a number of benchmark problems for Markov
mixing have been proposed in the literature so far [24–29]. In a
previous work [30], we have revisited the benchmark problem
originally proposed by Adams, Larsen and Pomraning for transport
in binary stochastic media with Markov mixing [24], and later
extended in [26–29]. In particular, while these authors had ex-
clusively considered d1 slab or rod geometries, we have provided
reference solutions obtained by Monte Carlo particle transport
simulations through d2 extruded and d3 Markov tessellations, and
discussed the effects of dimension on the physical observables.

In this work, we further generalize these findings by probing
the impact of the underlying mixing statistics on particle trans-
port. The nature of the microscopic disorder is known to subtly
affect the path of the travelling particles, so that the observables
will eventually depend on the statistical laws describing the shape
and the material compositions of the random media [6,7,12,25].
This is especially true in the presence of distributed absorbing
traps [7]. We will consider three different stochastic d3 tessella-
tions and compute the ensemble-averaged reflection and trans-
mission probabilities, as well as the particle flux. Two distinct
benchmark configurations will be considered, the former includ-
ing purely scattering materials and voids, and the latter containing
scattering and absorbing materials. This paper is organized as
follows: in Section 2 we will introduce the mixing statistics that
we have chosen, namely homogeneous and isotropic Poisson
(Markov) tessellations, Poisson-Voronoi tessellations, and Poisson
Box tessellations, and we will show how the free parameters
governing the mixing statistics can be chosen in order for the
resulting stochastic media to be comparable. In Section 3 we will
illustrate the statistical features of such tessellations, which is key
to understanding the effects on particle transport. In Section 4 we
will propose two benchmark problems, provide reference solu-
tions by using the TRIPOLI-4

s

Monte Carlo code, and discuss how
mixing statistics affects ensemble-averaged observables. Conclu-
sions will be finally drawn in Section 5.

2. Description of the mixing statistics

In this section, we introduce three mixing statistics leading to
random media with distinct features. The subscript or superscript
m will denote the class of the stochastic mixing: =m  for Poisson
tessellations, =m  for Voronoi tessellations, and =m  for Box
tessellations. For each stochastic model, we describe the strategy
for the construction of three-dimensional tessellations, spatially
restricted to a cubic box of side L. Without loss of generality, we
assume that the cubes are centered at the origin.

2.1. Isotropic Poisson tessellations

Markovian mixing is generated by using isotropic Poisson
geometries, which form a prototype process of stochastic tessel-
lations: a domain included in a d-dimensional space is partitioned
by randomly generated ( − )d 1 -dimensional hyper-planes drawn
from an underlying Poisson process [4]. In order to construct
three-dimensional homogeneous and isotropic Poisson tessella-
tions restricted to a cubic box, we use an algorithm recently pro-
posed for finite d-dimensional geometries [31,32]. For the sake of
completeness, here we briefly recall the algorithm for the con-
struction of these geometries (further details are provided in [33]).

We start by sampling a random number of hyper-planes NH

from a Poisson distribution of parameter ρ R4  , where R is the
radius of the sphere circumscribed in the cube and ρ is the (ar-
bitrary) density of the tessellation, carrying the units of an inverse
length. This normalization of the density ρ corresponds to the
convention used in [4], and is such that ρ yields the mean
number of ( − )d 1 -hyperplanes intersected by an arbitrary seg-
ment of unit length. Then, we generate the planes that will cut the
cube. We choose a radius r uniformly in the interval [ ]R0, and then
sample two additional parameters, namely, ξ1 and ξ2, from two
independent uniform distributions in the interval [ ]0, 1 . A unit
vector = ( )n n nn , , T

1 2 3 with components
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πξ

= −
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is generated. Denoting by M the point such that = rOM n, the
random plane will finally obey + + =n x n y n z r1 2 3 , passing trough
M and having normal vector n. By construction, this plane does
intersect the circumscribed sphere of radius R but not necessarily
the cube. The procedure is iterated until NH random planes have
been generated. The polyhedra defined by the intersection of such
random planes are convex. Some examples of homogeneous iso-
tropic Poisson tessellations are provided in Fig. 1.

2.2. Poisson-Voronoi tessellations

Voronoi tessellations refer to another prototype process for
isotropic random division of space [4]. A portion of a space is
decomposed into polyhedral cells by a partitioning process based
on a set of random points, called ‘seeds’. From this set of seeds, the
Voronoi decomposition is obtained by applying the following de-
terministic procedure: each seed is associated with a Voronoi cell,
defined as the set of points which are nearer to this seed than to
any other seed. Such a cell is convex, because it is obtained from
the intersection of half-spaces.

In this paper, we will exclusively focus on Poisson-Voronoi
tessellations, which form a subclass of Voronoi geometries [34–
36]. The specificity of Poisson-Voronoi tessellations concerns the
sampling of the seeds. In order to construct Poisson-Voronoi tes-
sellations restricted to a cubic box of side L, we use the algorithm
proposed in [36]. First, we choose the random number of seeds NS

from a Poisson distribution of parameter ρ( )L 3
 , where ρ char-

acterizes the density of the tessellation. Then, NS seeds are
uniformly sampled in the box [ − ]L L/2, /2 3. For each seed, we
compute the corresponding Voronoi cell as the intersection of
half-spaces bounded by the mid-planes between the selected seed
and any other seed. In order to avoid confusion with the Poisson
tessellations described above, we will mostly refer to Poisson-
Voronoi geometries simply as Voronoi tessellations in the fol-
lowing. Some examples of Voronoi tessellations are provided in
Fig. 2.
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