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a b s t r a c t

A general method for calculating the Rayleigh scattering by a particle of arbitrary shape is introduced.
Although analytical solutions for Rayleigh scattering exist for spheres and ellipsoids, analytical solutions
for more complicated shapes don’t exist. We find that in general the Rayleigh differential cross section
goes as α ( )k V m4 2 2 where k ¼ π λ2 / and λ is the wavelength, V is the volume of the particle and α ( )m the
average volume polarizability which is dependent on the shape and the complex index of refraction, m.
We use existing computational techniques, the discrete dipole approximation (DDA) and the T-matrix
method, to calculate the differential scattering cross section divided by k4 and plot it vs V2 to determine
α ( )m 2. Furthermore, we show that this leads to a general description of the internal coupling parameter
ρ π α′ = ( )k m2arbitrary

V
A

where A is the average projected area of the particle in the direction of incident light.
It is shown that this general method makes significant changes in the analysis of scattering by particles of
any size and shape.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The light scattering by regularly and irregularly shaped parti-
cles has been the subject of a great deal of theoretical, computa-
tional, and experimental work. This work not only advances our
knowledge in general, but also plays an important role in climate
models. The advancements of computers and computational
techniques over the last three decades have made the calculation
of light scattering quantities from non-spherical particles more
practical as well and greatly increased the speed at which the
calculations from spherical particles (Mie scattering) can be cal-
culated. The most common way of presenting the angular patterns
of the light scattered intensity from particles is to plot them vs the
scattering angle θ , but these are generally not amenable to
quantitative description or differentiation for different shapes.
Over the past years, we have developed a unique approach that
provides quantitative descriptions of angular light scattering pat-
terns produced by particles, Q-space analysis (see Section 2).

The Rayleigh differential cross section for a sphere has a well-
known analytical solution which can be found in numerous loca-
tions, [1–4] are but a few. An analytical solution for the Rayleigh
differential cross section of ellipsoids can also be found in [2,4]. As
the shape of the particle begins to become more complicated,

finding an analytical solution becomes nearly if not completely
impossible. The focus of this work is to present a general de-
scription for the Rayleigh scattering cross section of an arbitrary
shape and a straightforward method by which it can be calculated
using existing computational techniques. It will also be shown that
the general definition of the Rayleigh scattering cross section leads
to a general definition of the internal coupling parameter [5] as
well. Both of these generalizations are important in the application
of Q-space analysis to obtain a general description of light scat-
tering by particles of any shape.

2. Q-space and the internal coupling parameter for spheres

Our need for a general formulation for the Rayleigh cross sec-
tion arouse with our application of Q-space analysis to particles of
arbitrary shape. Q-space analysis involves plotting the differential
scattering cross section (or the scattered intensity) versus q or the
dimensionless variable qReq, where Req is an equivalent radius such
as the radius of a sphere R, the radius of gyration Rg , or a volume
equivalent radius R ,veq and q is the magnitude of the scattering

wave vector: ( )π λ= ( ) θq 4 / sin
2

with λ being the wavelength and θ
is the scattering angle, on a log-log plot [6–8]. Q-space analysis
reveals functionalities of the scattering with q that are not ap-
parent with conventional plotting with the scattering angle θ.
Often in Q-space analysis, the differential cross section is
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normalized by the Rayleigh differential cross section of the particle
[8,9] which for a sphere is given by
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− ( )

dC d k R
m
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In Eq. (1) k ¼ π λ2 / , m is the relative index of refraction, and the
term in the bars is the Lorentz-Lorenz factor. When Q-space ana-
lysis is applied to non-spherical particles, a method to determine
the proper Rayleigh normalization is needed which is why this
work is not only of general intellectual importance but will also
play a key role in future Q-space studies.

When the Rayleigh normalized differential cross section of an
arbitrary sphere is plotted vs qR, distinct regimes and limits in the
scattering curves can be found that would not be apparent when
plotting against the scattering angle θ. These regimes appear in the
scattering as a function of a parameter that we have named the
internal coupling parameter, ρ’ [5] that provides a quasi-universal
description of the scattering. The internal coupling parameter is
derived by looking at the two limits of Mie scattering from
spheres. In the →m 1 limit, the Mie scattering from spheres gives
the 3d Fraunhofer diffraction limit or the Rayleigh-Debye-Gans
(RDG) limit [10]. Looking at the combined →m Large or →R Large
limit, the scattering is in the 2d Fraunhofer circular aperture (or
obstruction) diffraction limit. To define a parameter that describes
both of these diffraction limits, we take the square root of the ratio
of the differential cross section at zero scattering angle in each
limit. For the RDG limit Eq. (1) is used, and for the 2d circular
aperture limit the differential cross section is given by [11]
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The square root of the ratio of Eqs. (1) and (2) results in the
internal coupling parameter of a sphere given by

ρ′ = −
− ( )
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The internal coupling parameter of a sphere ρ′sphere is related to
the Lorentz-Lorenz factor, which is directly involved in the radia-
tive coupling between the sub-volumes that comprise the particle
[5]. When ρ′sphere o1, the coupling between sub-volumes is weak,

i.e. the effects of internal multiple scattering are small, and thus
the scattering is in the RDG limit which corresponds to diffraction
from the volume of the particle. As ρ′sphere increases, so does the
coupling. As ρ′sphere continues to increase, the scattering approaches
the 2d diffraction limit [12].

One of the functionalities that has previously been found in the
scattering from spheres is that as ρ′sphere increases past unity, the
Rayleigh normalized scattering in the forward direction begins to

fall by a factor of ( )ρ′1/ sphere
2
as shown in Fig. 1. Also, shown in Fig. 1

(right side) is the Rayleigh normalized differential cross section in

the forward direction multiplied by ( )ρ′sphere
2
which approaches

1 as ρ′sphere goes to infinity.

3. Rayleigh scattering for arbitrary shapes

As stated above, descriptions of the Rayleigh differential cross
section for spheres can be found in numerous locations [1–4]. It
should not be surprising that the Rayleigh differential cross section
for a sphere is just a special case of the Rayleigh differential cross
section of ellipsoids[2,4]. For randomly oriented ellipsoids the
Rayleigh differential cross section is given by [2,4]
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where a, b, and c are the semi-principle axes, and L L and L, ,1 2 3 are
geometric parameters given by the integrals

∫ ( ) ( )( )( )
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+ + + + ( )

∞
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abc dq

q x q a q b q c2 5
x

0 2 2 2 2

with x being equal to a, b, or c for L L and L, ,1 2 3, respectively. There
are no known analytical results for more complex shapes and
finding analytical solutions for Rayleigh scattering by such shapes
appears to be extremely difficult, if not impossible. So how can we
find the Rayleigh differential cross section for an arbitrary shape?

Fig. 1. Left: Forward scattered (θ and q ¼ 0) Rayleigh normalized differential cross section of spheres vs ρ′sphere. Right: Rayleigh normalized differential cross section

x ( )ρ′sphere
2
of spheres vs ρ′sphere.
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