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a b s t r a c t

In this paper we consider the dependence of the existence and position of the neutral points on the
albedo of single scattering and the optical thickness in a Rayleigh scattering plane-parallel homogeneous
atmospheres. We use the Chandrasekhar method of discrete ordinates and the method of approximating
the Sobolev resolvent function to solve the vector equation of transfer in l- and r-representation. On the
basis of many different models of Rayleigh atmospheres we show the behaviour of the neutral points
while the parallel incident flux can be both unpolarized or polarized. Our calculations show with high
probability that the maximum number of neutral points in a Rayleigh atmosphere is four.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of the brightness and polarization of the clear
sunlit sky was theoretically explained by Chandrasekhar only 83
years after Lord Rayleigh had posed it in 1871 [1]. The essence of
the problem is that when a parallel beam of the Sun's radiation is
incident on a Rayleigh-scattering plane-parallel homogeneous at-
mosphere of optical thickness τ0 in some specified direction
characterized by the cosine of the incident angle θ0 we observe
that at some angles the scattered radiation is not polarized. These
points in these directions are called the neutral points.

This phenomenon was first discovered by Arago above the
antisun soon after he had found in 1809 that the solar light is
polarized. The next neutral point was discovered by Babinet in
1840, this time it was situated above the Sun. Two years after that,
from considerations of symmetry, Brewster predicted the presence
of a third neutral point below the Sun and in 1846 Babinet con-
firmed the existence of it.

If the zenith angle of the Sun is smaller that 70° then these
points are situated at the angle of 20° above and below the Sun.
And when the Sun is setting and the Brewster point disappears a
new neutral point appears in the antisolar direction - the Arago
neutral point. When Dave and Furukawa theoretically studied
optically thicker atmospheres they found yet another neutral point
in the antisolar direction [2]. This point was first observed by
Bernáth et al only in 2002 [3].

During the 19th century the existence of these neutral points
was looked at as a peculiar property of the clear sky optics. The
location and behaviour of these points was studied by Dorno in

detail during seven years in the Swiss health-resort Davos [4]. And
not only in the main meridian (where azimuth ϕ = 0) but in dif-
ferent azimuths. As a results he obtained the Dorno diagrams, i.e
the lines dividing the sky in zones with positive and negative
polarization.

Van de Hulst noted that measuring the Rubenson degree of
polarization outside of the main meridian is hardly justified be-
cause the angle between the planes of polarization and meridian is
not zero or 90° [5]. This means that in order to get a full picture of
the behaviour of polarization degree we should measure also the
U-component of the intensity vector.

Many attempts were undertaken to explain this rather queer
behaviour but only after Chandrasekhar [6] applied his powerful
method of discrete ordinates for solving the vector equation of
transfer it appeared that the observed and computed neutral
points were accordant.

Since the neutral points have been one of the important tools in
atmospheric research for more that hundred years we undertook
to investigate the existence and position of neutral points as
functions of the main parameters of an atmosphere: the albedo of
single scattering, the optical thickness, the optical depth at the
fixed optical thickness, the angle of incidence of the illuminating
beam and its polarization state and the albedo of the Lambert
bottom. The question - could there be more than four neutral
points - was answered in the negative. Our calculations showed
that four is the maximum number of neutral points. However, this
statement is not absolute and it is limited to the cases considered.

To solve the problem posed we applied the method of discrete
ordinates described in our paper [7]. The code is able to tackle the
problems of Rayleigh scattering in conservative and non-con-
servative homogeneous atmospheres at any optical depth with
Lambert surface at the bottom or not.
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2. The fundamental equation

The equation of transfer for a Rayleigh scattering plane-parallel
homogeneous atmosphere is the following
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Throughout this paper we use the Chandrasekhar set of the Stokes
parameters, i.e.
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where “T” stands for “transposed”.
If the atmosphere is bounded by a Lambert reflector with al-

bedo A and there is no incident diffuse radiation at τ = 0, the
boundary conditions for Eq. (1) are
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and the net flux of the incident parallel beam of radiation on the
atmosphere in the direction μ ϕ( ),0 0 is
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In Eqs. (1)–(3) τ is the optical depth measured from the top of the
atmosphere, τ0 is the optical thickness of the atmosphere

τ τ( ≤ ≤ )0 0 , λ is the albedo of the single scattering λ( ≤ ≤ )0 1 , ϕ is
the azimuth angle measured from an arbitrary point counter-
clockwise when looking in the positive τ direction ϕ π( ≤ ≤ )0 2
and μ is the cosine of the angle between the direction of travel of a
photon and the positive τ-axis μ( − ≤ ≤ )1 1 .

Chandrasekhar has shown that we may reduce the solution of
the vector Eq. (1) to the solution of one two-component vector
equation and three scalar equations [6]. The vector equation was
solved by discrete ordinate method in [7] and the respective code
may be obtained from the author. The three scalar equations of the
Chandrasekhar pseudo-problem type were solved by approx-
imating the kernel in the integral equation for the Sobolev re-
solvent function by a Gaussian sum. This approach allows to solve
the equation for the resolvent function exactly and the result is a
sum of exponentials. The parameters of this sum can be simply
found, e.g. in [8]. In the present paper the order of Gauss quad-
rature is N¼100.

Next we determined the Rubenson degree of polarization (RDP)
as
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and searched for the zeros of this function, using the simple linear
interpolation. We believe that this interpolation together with
rather high order of quadrature secures the accuracy at least three
significant figures.

3. Results

3.1. Unpolarized incident beam

First we consider the case with unpolarized incident beam and
the downward diffuse radiation only in the sun's vertical. We
found the neutral curves in the μ τ( ), 0 plane for different μ and λ.
For a conservative atmosphere the neutral curves for small μ0 both
for solar and antisolar directions are approximately symmetric and
the “bubbles” are of equal area. The larger the angle μarccos 0 the
smaller are the bubbles in the antisolar direction and they vanish
completely if μ > 0.4480 . Fig. 1 shows the “curve of vanishing” as a
function of μ0 and λ. It appears that the smaller the albedo of
single scattering the smaller is also the angle μarccos 0 at which the
bubble disappears, e.g. for λ = 0.5 the neutral points in the di-
rection of antisun disappear at μ > 0.2630 .

For a conservative atmosphere the neutral bubbles become
larger with the growth of μ0 in solar direction and they “take off”
from the μ = 0 axis. They flatten in this process and if μ = 10 the
neutral points disappear Fig. 2.

There are no neutral points in a conservative atmosphere for
the upward radiation in the direction of antisun.

In an optically thick ( τ = 50 ) conservative atmosphere we stu-
died also the dependence of the neutral curves on the incident
beam angle in the μ τ( ), plane. For the downward diffuse radiation
we could observe only two neutral points at different angles of the
incident beam - Figs. 3 and 4.

In the case of upward radiation the behaviour of the neutral
curves is somewhat different.

Fig. 1. There are no neutral points in λ μ( ), plane for the transmitted radiation in a
Rayleigh scattering atmosphere upwards of this line ϕ π( = = = = )F F A, 0.5, 0l r .
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Fig. 2. The neutral curves in ( τ μ,0 ) plane for the transmitted radiation in a con-
servative Rayleigh scattering atmosphere μ ϕ( = … = = = = )F F A0.1, , 0.9, 0, 0.5, 0l r0 .

T. Viik / Journal of Quantitative Spectroscopy & Radiative Transfer 189 (2017) 13–1714



Download English Version:

https://daneshyari.com/en/article/5427341

Download Persian Version:

https://daneshyari.com/article/5427341

Daneshyari.com

https://daneshyari.com/en/article/5427341
https://daneshyari.com/article/5427341
https://daneshyari.com

