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a b s t r a c t

Two approaches for solving the three-dimensional problem of wave diffraction at a finite
grating consisting of bodies of revolution are proposed. An approximate solution is
obtained for a grating with small elements. This solution is applied to consider gratings
with a large number of elements. The coincidence of the results obtained by the two
methods is shown. The reflection and transmission coefficients are compared for finite
and infinite gratings.
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1. Introduction

The problem of wave diffraction at particles which are
small compared with the wavelength is of great interest in
optics, radio astronomy, hydrometeorology (see, for
example, [1–4]), etc. There is a wide range of methods,
such as the method of current integral equations, the
method of T-matrices, and some others, which can be used
to solve this problem. Recently, an approach based on the
electrostatic approximation [5,6] began to develop
actively. We believe that the pattern equation method

(PEM), which was proposed in 1992 and has been actively
developed since that time (see [7]), is the most adequate
method for solving such problems. The fact is that PEM
requires the body pattern which, in contrast to the dis-
tribution of sources (currents) on the scatterer surface,
weakly depends (in the case of diffraction at a body whose
dimensions are small compared with the wavelength) on
the scatterer shape and the presence of other bodies near
the scatterer. PEM permits solving the corresponding
problem in the so-called "single-mode approximation"
(see below), where the pattern of a single body can be
written as the sum of the minimum possible number
(namely, six) of terms. PEM also allows one effectively to
solve the problems of wave diffraction not only at small
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independent particles but also at groups of bodies, even if
such bodies are located close to each other. We note that,
in this case, the whole number of unknown terms is equal
to 6NΣ, where NΣ is the number of particles. Thus the
quantity of basis functions is rather small. In this paper, the
problem of electromagnetic wave diffraction at a finite
lattice consisting of bodies of revolution, which are small
compared with the wavelength, is considered. The pro-
blem is solved in two ways – by the pattern equation
method based on the use of the single-mode approxima-
tion mentioned above and by the modified method of
discrete sources (MMDS) [7] which, in principle, permits
solving the problem with the required accuracy.

2. Statement of the problem and its solution by PEM

Consider the problem of scattering of the primary
monochromatic electromagnetic field E

!0
, H
!0

at a finite
grating consisting of regularly spaced identical bodies of
revolution. Suppose that the "centers" of the bodies are
located at one plane with the periods dx and dy (see Fig. 1).
The axes of the grating elements are parallel to each other.
Denote the surfaces of the grating elements by Sjl, where
j¼ �N1;N1 ; l¼ �N2;N2 . We introduce the Cartesian
coordinate system with the origin inside the central ele-
ment S00 of the grating (see Fig. 1) and direct the axis z
orthogonally to the plane of the grating. Let ðxjl; yjl; zjlÞ be
the coordinate system connected with the grating element
with the numbers j and l. We let ðx0jl; y0jl;0Þ denote the
coordinates of the origin of the coordinate system

connected with the corresponding element of the grating
in the general system of coordinates.

Let the boundary conditions be posed on the surfaces Sjl:

n!jl � E
!� ����

Sjl
¼ 0; j¼ �N1;N1 ; l¼ �N2;N2 ; ð1Þ

where n!jl is the unit vector of outer normal on the surface Sjl .
The secondary field outside the grating obeys the homo-
geneous Maxwell equations

∇� E
!1

¼ � ikζH
!1

;∇� H
!1

¼ ik
ζ
E
!1

; ð2Þ

where k¼ω
ffiffiffiffiffi
εμ

p
is the wave number and ζ¼

ffiffiffiffiffiffiffiffi
μ=ε

p
is the

wave impedance of the medium. The Sommerfeld condi-
tion is satisfied at infinity:
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þζH
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!1
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ζ
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r

� �
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First, we consider the approach based on PEM. We
present the secondary field outside the grating as the sum

E
-1

¼
XN1

j ¼ �N1

XN2

l ¼ �N2

E
-1

jl ; H
-1

¼
XN1

j ¼ �N1

XN2

l ¼ �N2

H
-1

jl; ð4Þ

where E
!1

jl ; H
!1

jl denote the field scattered at the element
with the numbers j and l. As is known, the following
asymptotic relations in the far zone (krjl441) are valid [8]:

E
!1

jl ¼
expð� ikrjlÞ

rjl
F
!E

jlðθjl;φjlÞ

Fig. 1. Geometry of the problem.
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