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a b s t r a c t

Two procedures for the measurement of the extinction cross section (ECS) of one
particle using a slightly focused Gaussian beam have been introduced and numerically
tested. While the first one relies on previously introduced ideas and has close con-
nection with the optical theorem, the second procedure is new and is mostly related
with light measurements where the detector collects much of the energy of the
incident beam.

Both procedures prove to be valid and somehow complementary up to particle sizes
of the order of the beam waist, thus enlarging the capability of simple measurement
set-ups based on Gaussian beams for the estimation of the ECS of one particle.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The calculation and measurement of the ECS of one
singe particle is a common problem in light scattering
theory [1,2]. The generalization of the definition of ECS to
the case of non-plane incident wave is also a topic widely
addressed. Of course, one of the cases of major interest is
for Gaussian beams. Without going very back in time,
some relevant references are (in chronological order) [3–
9]. A complete review of the topic is done in [10].

Nowadays, the ease of use of Gaussian beams focused
on one particle suggests that it would be useful to devise
approximate experimental procedures for the measure-
ment of the ECS of the particle based on that configuration.
In our work we will consider a linearly polarized Gaussian
beam slightly focused (divergence angles up to a max-
imum of 10°) as the incident excitation.

In this context, we propose two approximate methods
for the measurement of the ECS of a single particle by

means of the detection of light without and with the
particle placed on the focus of the incoming Gaussian
beam. One of the procedures was already introduced in
Ref. [5] and relies on the light detection only in a small
angle in the forward direction. Conversely, the second
procedure that we will propose will be more adequate
when light collecting angles are wider.

In Ref. [5], the validity of several approximate expres-
sions for the calculation of the ECS by using Gaussian
beams is discussed in great detail, both from an analytical
and from a numerical point of view. Restricting ourselves
to numerical tests, the present work checks the accuracy of
the two methods we will propose by means of computer
calculations and analyzes how they compare with analy-
tical results for spherical particles using Mie theory. The
work is based on the explicit numerical calculation of the
Poynting vector of the waves reaching the light detector.
This detector is considered to be of finite aperture, sub-
tending a well-known angle from the center of the Gaus-
sian beam, just the precise position where the particle is
placed. For this purpose, specific and precise numerical
methods have been developed. The necessary procedures
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for the detailed development of our ideas are presented as
follows:

2. Development of specific numerical methods to
handle the problem

For the calculation of the Poynting vector at any point
in space, the interference between the beam illuminating
the particle and the subsequently scattered field must be
explicitly formulated.

In our thought experiment (Gedankenexperiment) the
illumination is performed with a Gaussian beam with
small divergence angle sin ðδ0Þ ¼NAeff , whose mathema-
tical expression (within the standard paraxial theory) is:

Eðz;ρÞ ¼ E0
ω0

ωðzÞexp
�ρ2

ω2ðzÞ

� �
exp i

kρ2

2RðzÞ�ΦGðzÞ
� �

exp iðkzÞ;

ð1Þ

where ω0 is the beam radius in the focal plane, RðzÞ ¼
z 1þ zR

z

� �2� �
, zR ¼ kω2

0
2 , ΦGðzÞ ¼ tan �1 z

zR

� �
, ρ is the radial

distance from the axis and k the wave-vector.
The previous formulae assume the Z axis to be beam

axis and the X and Y directions to be in the transverse
directions. We will assume that the Gaussian beam is lin-
early polarized, with the electric field having always the
direction of the constant unit vector êx. Within this
approximation, the corresponding magnetic field is:

H¼ êz � E
cμ0

; ð2Þ

with c the speed of light and μ0 the magnetic permeability
of vacuum. Given the wavelength λ, power P0 and
NAeff ¼ sin ðδ0Þ the peak amplitude E0 can easily be found
by using

ω0 ¼
λ
πδ0

ð3Þ

and

P0 ¼
πE20ω

2
0

4cμ0
ð4Þ

We plan to use the Mie theory for the calculation of the
scattered field, but this theory is developed for a spherical
particles excited by a linearly polarized plane wave (of
amplitude Ep). Generalized Mie theories [10] can tackle the
situation of spatially inhomogeneous illumination. Yet, if
the particle can be considered as homogeneously polar-
ized, the use of Mie theory is well justified [2]. In any case,
since our illumination is not a plane wave, we have to
estimate Ep for the particle, when it is being excited by the
Gaussian beam.

When the particle (with radius a) is centered in the
beam waist, even when the particle is small, taking Ep ¼ E0
is not the best choice since, as the Gaussian profile has a
maximum on axis, this assumption always overestimates
the value for Ep. We propose calculate Ep as follows.

a. Find the power incident on a centered circle of radius
a,

Pa ¼ P0 1�exp
�2a2

ω2
0

 ! !
ð5Þ

b. Find the constant (‘mean’ ) value for the electric field
Em that corresponds to the flux of the power Pa across
the area πa2; this is

Em ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Paη0
πa2

r
; with η0 ¼ 377Ω: ð6Þ

c. Assume Ep ¼ Em.

Besides, this approach does not require the size of the
particle to be very small. Once Ep is estimated, the Mie
theory can be used, giving for the scattered field

Esðr;θ;ϕÞ � Ep
exp iðkrÞ

� ikr
Xðθ;ϕÞ: ð7Þ

The Mie theory provides the calculation of the angular
term, the vector scattering amplitude Xðθ;ϕÞ, by assuming
a spherical shape for the particle, with radius a. This topic
is very well known; in Ref. [2] all important details can be
found. Particularly, in our work we will make continuous
use of the result regarding to the number of terms (in the
final series development) that is enough for an accurate
representation of the scattered field [11]. This result relates
explicitly the number of terms to the radius of the particle
(more terms required as the particle gets bigger). Thus, we
consider our calculations of the scattered field as ‘exact’
since we have fulfilled the requirements imposed by the
condition discussed in Ref. [11].

According to our previous choice for the axis, the
scattered field will have the three spatial components but,
clearly the longitudinal one (Z) will be negligible in the far
field with respect to the other two. Thus, finally, when
there is a particle present in the path of the Gaussian
beam, we will consider the Jones vector of the total field
reaching the light detector in the far zone to be

EGþEs ǀx
Es ǀy

 !
; ð8Þ

where Es is the scattered field generated by the Gaussian
beam EG.

This formulation shows that, since the Cartesian com-
ponents of the scattered field (in the far field) are being
calculated, we can calculate the interferences (sum)
between this scattered field and the incident Gaussian
beam. The scenario is like in Figure 3.7 of Ref. [2], with the
difference of assuming illumination by means of a Gaus-
sian beam, not with a plane wave like there (see Fig. 1).

A careful analysis of Fig. 1 illustrates that the compu-
tation of the Poynting vector of the resulting field on the
points of the sphere and subsequent integration over the
area defined by the aperture of the detector, allows us to
calculate the power collected by this detector. According to
Fig. 1, the collecting area will be defined on the imaginary
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