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a b s t r a c t

Based on classic Maxwell's theory and the Gauss Theorem we extended the Optical
Theorem to the case of a penetrable particle excited by a multipole source. We demon-
strate that the derived extinction cross-section can be evaluated via calculation of some
specific derivatives from the scattered field at the point of the multipole location. The
obtained relation between extinction cross-section and scattering cross-section can be
employed to estimate the corresponding absorption cross-section.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Optical Theorem (OT) in electromagnetics has a
long history; its occurrence in scattering theory starts
more than one hundred years ago and similar results can
also be found in acoustical scattering, seismics and quan-
tum mechanics [1–3]. The term OT has been well known
ever since [4]. The OT is a basic result in scattering theory,
relating the extinction cross section of a structure to the
scattering amplitude in the forward direction. Over the
years, many derivations and implementations of the the-
orem have been provided [5–8]. In computational elec-
tromagnetics this theorem is employed for checking or
verification of the results of light scattering models, since
for a non absorbing particle, the total scattering cross-
section must be proportional to the imaginary part of the
forward scattering amplitude [9,10].

The theorem has been reconsidered and generalized by
a number of researchers to consider plane wave scattering

by a particle near an interface between media with dif-
ferent refractive indices [11,12], and electromagnetic wave
propagation in anisotropic and bianisotropic media
[13,14]. The OT was extended to the case of seismic wave
propagation [15], as well as to rough surfaces and beam
excitation [16,17]. Excitation by a local source requires a
new approach, and the OT has up to now been extended to
the point source excitation of a particle located in free
space [18,19].

It is known, that a dipole radiation pattern is insuffi-
cient for directional scanning to obtain obstacle location
area. This can be achieved by using multipoles, which
allow to generate more directive emission diagrams. In the
present paper we extended the OT to the case of a pene-
trable particle deposited in free space excited by an electric
multipole of arbitrary order. We use classic Helmholtz –

and Maxwell's theories and the Green Formulas and the
Gauss Theorem as basic techniques. This generalization
will enables to test scattering models in case of wave
scattering by non-absorbing particles.

The paper is organized as follows. In the next section
we consider the scalar case of wave excitation, which has
some own interest due to the variety of application in
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acoustics, nondestructive testing, modeling in medicine
and scattering problems connected to environmental data
analysis. We performed a detailed analysis of the scalar
scattering problem, which helps us to complete our con-
sideration with the electromagnetic case. At the following
section we will examine a penetrable particle excited by an
electric multipole of an arbitrary order.

2. The Optical Theorem for the scalar case

We begin our consideration from the mathematical
statement of the scattering problem for the scalar field
generated by a multipole source deposited in free spaceℜ3

at a point M0 in the presence of a bounded penetrable
particle Di with a smooth surface ∂DiACð2;αÞ (Hӧlder
space). Then the mathematical statement of the scattering
problem can be presented as

ΔU0þk20U0 ¼ � JðM;M0Þ; M0AD0: ¼ R3=Di;

ΔUiþk2i Ui ¼ 0; MADi;

UðPÞ½ � ¼ ∂UðPÞ=∂n� �¼ 0; PA∂Di;

∂U0

∂r
þ jk0U0 ¼ oð1=rÞ; r: ¼ Mj j-1: ð1Þ

where JðM;M0Þ is defined by the particular form and order
of the multipole, which will be specified later; [.] denotes
the jump of the fields crossing the surface ∂Di, n is the unit
normal to the particle surface ∂Di, and k2i ¼ const; Imk2i r0
which corresponds to the time dependence exp jωt

� �
.

We choose the origin of a Cartesian coordinate system
and direct its Oz axis so that it passes through the point
M0 ¼ 0;0; z0ð Þ corresponding to the source position. Let us
introduce the multipoles, which in spherical coordinate
system accept the form

wm
n ðM;M0Þ: ¼ hð2Þn ðk0rÞPm

n ð cos θÞe� jmφ; n¼ 0;1; :::;
m¼ 0; 71; :::; mj jrn ð2Þ

For the multipoles (2) the following fundamental
representation is valid [20]

hð2Þn ðk0RMM0 ÞPm
n ð cos θÞe� jmφ

¼ ð�1Þmjn j
k0

∂
∂x

� j
∂
∂y

� �� 	m
PðmÞ
n

j
k0

∂
∂z

� �
hð2Þ0 ðk0RMM0 Þ

here hð2Þ
n ðxÞ is a spherical Hankel function, RMM0 ¼ M�M0jj ,

PðmÞ
n ð cos θÞ ¼ dmPnð cos θÞ

dð cos θÞm , Pnð cos θÞ is a Legendre poly-

nomial. Taking into account that the fundamental solution
to the Helmholtz equation

Ψ ðM;M0Þ:ΔΨþk20Ψ ¼ �δðM�M0Þ has the form

Ψ ðM;M0Þ ¼
e� jk0RMM0

4πRMM0

¼ � j4πk0h
ð2Þ
0 ðk0RMM0 Þ, then

Δwm
n þk20w

m
n ¼ Δþk20


 �
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� �
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0 ðk0RMM0 Þ ¼ �4π

k0
Dm
n δðM�M0Þ

where δ is the Dirac delta function, and differential
operator Dm

n is defined as

Dm
n ¼ ð�1Þmjn�1 j

k0

∂
∂x

� j
∂
∂y

� �� 	m
PðmÞ
n

j
k0

∂
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� �
ð3Þ

So, returning to (1) it is easy to conclude that

JðM;M0Þ ¼
4π
k0

Dm
n δðM�M0Þ ð4Þ

In this case, the scattering problem (1) has a unique
solution [21].

Let us apply the Green Theorem [21] to the scattering
problem (1) solutionU0. Choose a sphere DR of radius R, so
that M0 and Di are inside the sphere and the DR boundary
will be referred as ΣR. Applying the second Green's for-
mula inside DR=Di to U0 and the complex conjugate U�

0 we
getZ
DR=Di

ðΔU0 UU
�
0�ΔU�

0 UU0Þdτ¼
Z
ΣR [ ∂Di

∂U0

∂n
U�

0�
∂U�

0

∂n
U0

� 
dσ

ð5Þ
Here ∂=∂n is the normal derivative to the corresponding

surface directed outside of the region DR=Di. Then, the left-
hand side of (5) can be transformed toZ
DR=Di

ðΔU0 UU
�
0�ΔU�

0 UU0Þdτ¼ 2jIm
Z
DR=Di

J�ðP;M0ÞU0ðPÞdτP

ð6Þ
Therefore, the relation (5) can be rewritten in the

following form:

Im
Z
DR=Di

J�ðP;M0ÞU0ðPÞdτP ¼ Im
Z
ΣR

∂U0

∂n
U�

0dσ� Im
Z
∂Di

∂U0

∂nþU
�
0dσ

ð7Þ
where ∂=∂nþ is an external normal derivative with respect
to Di . Employing the properties of the δ function [22], the
integral in the left part of (7) can be transformed to

Im
Z
DR=Di

J�ðP;M0ÞU0ðPÞdτP

¼ Im
4π
k0

Z
DR=Di

Dm�
n δðP�M0Þ

� �
U0ðPÞdτP

( )

¼ 4π
k0

Im
Z
DR=Di

Dm�
n

� �TU0ðPÞ
h i

δðP�M0ÞdτP ð8Þ

here Dm�
n ¼ � jð Þn�1 j

k0
∂
∂xþ j ∂∂y


 �h im
PðmÞ
n � j

k0
∂
∂z


 �
is a complex

conjugated operator and Dm�
n

� �T is transposed with respect

to Dm�
n . So, the operator Dm�

n

� �T is as follows:

Dm�
n

� �T ¼ ð�1Þmþn�1jn�1 j
k0

∂
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þ j
∂
∂y

� �� 	m
PðmÞ
n

j
k0

∂
∂z

� �
ð9Þ

Consider the first integral in the right part of (7).
Employing the Sommerfeld radiation condition (1) we get

Im lim
R-1

Z
ΣR

∂U0

∂r
U�

0dσ ¼ �k0 lim
R-1

Z
ΣR

U0j j2dσr

Using the definition of the Far Field Pattern Fðθ;φÞ [21]

U0ðMÞ ¼ e� jk0r

k0r
Fðθ;φÞþoð1=rÞ; r-1

the integral accepts the form

Im lim
R-1

Z
ΣR

∂U0

∂r
U�

0dσ ¼ � 1
k0

Z
Ω
Fj j2dω ð10Þ

where Ω¼ 0rθrπ; 0rφr2π
� �

is a unit sphere.
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