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a b s t r a c t

A numerical implementation of a method to analyze scattering by randomly located
obstacles in a slab geometry is presented. In general, the obstacles can be of arbitrary
shape, but, in this first implementation, the obstacles are dielectric spheres. The coherent
part of the reflected and transmitted intensity at normal incidence is treated. Excellent
agreement with numerical results found in the literature of the effective wave number is
obtained. Moreover, comparisons with the results of the Bouguer–Beer (B–B) law are
made. The present theory also gives a small reflected coherent field, which is not pre-
dicted by the Bouguer–Beer law, and these results are discussed in some detail.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Electromagnetic scattering by randomly located objects
are frequently encountered in science. It is an important
issue in terrestrial and atmospheric research, biomedical
and life sciences, astrophysics, nanotechnology, just to
mention a few. The literature is comprehensive, and we
refer to the textbook literature and references therein,
see e.g. [1–9] for a survey of the field.

The literature contains several methods of computing
the effective wave number keff for a half space contain-
ing a collection of random spheres, see e.g. [10–17] and
[3, Chapter 6], and references therein. The effective wave
number is obtained by solving a determinant relation and
there are in general many solutions. The new method
presented in a recent paper, [18], does not suffer from this
deficiency and it is able to compute the coherent trans-
mitted and reflected fields from a finite slab containing
random scatterers. In this paper, results are presented for

slabs with different thicknesses and spherical scatterers
with the relative permittivity ϵr ¼ 1:332 which corre-
sponds to fresh water at optical frequencies (refraction
index m¼1.33). Both the electrical size of the spheres and
the volume fraction are varied.

2. Theory

The theory of electromagnetic scattering by an
ensemble of finite scatterers is comprehensive, and
excellent reviews of the topic are found in [1–7,19]. The
underlying theoretical treatment of the problem handled
in this paper is presented in detail in Kristensson [18]. The
purpose of this section is to review and highlight some of
the more important steps in the theory. For a more com-
plete reference we refer to Kristensson [18].

We simplify the theoretical results in [18] to a geometry
of a slab, zA ½0; d�, and to spherical scatterers of radius a
(dielectric or perfectly conducting). These assumptions
simplify the results considerably, and make the numerical
implementation less demanding. The geometry is depicted
in Fig. 1. Notice that the domain of possible locations of
local origins, ½z0; zd�, which defines the domain V s, is
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slightly smaller than the extent of the slab, i.e., the interval
½z0; zd� ¼ ½a; d�a�. Vectors are denoted in italic boldface and
matrices in roman boldface. A caret over a vector denotes a
vector of unit length. In this paper, we also adopt the
multi-index notation n¼ τσml, where the integer indices
τ¼ 1;2, σ ¼ e;o (even and odd in the azimuthal angle),
m¼ 0;1;…; l and l¼ 1;2;3;….

Assume the incident field on the slab is

EiðzÞ ¼ E0eik0z

The coherent part of the total electric field on either side of
the slab is

〈E〉ðzÞ ¼ Eteik0z; z4d

E0eik0zþEre� ik0z; zo0

(

where the reflected and transmitted amplitudes, Et and Er,
respectively, are given as
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in terms of the number density n0 and the (unknown)
coefficients 〈f n〉ðzÞ. The coefficients 〈f n〉ðzÞ are the solution
to a system of linear Fredholm integral equations of the
second kind in z [20], viz.,

〈f n〉ðzÞ ¼ eik0z
X
n0

Tnn0an0 þk0

Z zd

z0

X
n0

Knn0 ðz�z0Þ〈f n0 〉ðz0Þdz0;

zA ½z0; zd� ð3Þ
where the transition matrix of the scatterers is denoted
Tnn0 and where the kernel Knn0 ðzÞ can be expressed in terms
of spherical waves [18,21]. The explicit form of the kernel

Knn0 is ðρ¼ xx̂þyŷÞ

Knn0 zð Þ ¼ n0

k0

X
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where g(r) is the pair distribution function [2,22–24] and
Pnn0 ðk0dÞ is the translation matrix for the outgoing sphe-
rical vector waves [25,26]. The most simple pair distribu-
tion function is the hole correction (HC), gðrÞ ¼Hðr�2aÞ,
where H(x) is the Heaviside function and a is the radius of
the spheres. The double integral in the definition of the
kernel can be solved analytically for the hole correction in
terms of a series of spherical waves [21]. More complex
distributions functions, e.g. the hypernetted-chain equa-
tion, the Percus–Yevick approximation (P-YA), the self-
consistent approximation, and the Monte Carlo calcula-
tions, are not employed in this paper [2,22–24].

The spherical scatterers are completely characterized
by the transition matrix Tnn0 , which for a spherical scat-
terer is diagonal in all its indices. The coefficients an are
the expansion coefficients of the incident plane wave in
spherical vector waves [18,26]. If the incident direction is
along the positive z-direction, i.e., k̂ i ¼ ẑ , these are (σ ¼ e is
the upper line and σ ¼ o is the lower line)
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where the vector E0 denotes the polarization state in the
x–y plane.

The complex valued transmission and reflection coef-
ficients that maps the incident field to the transmitted and
reflected fields are

Et ¼ tE0; Er ¼ rE0 ð4Þ

respectively. The transmissivity T and the reflectivity R of
the slab are given by

T ¼ jEtj2
jE0j2

; R¼ jErj2
E0

2
���� ð5Þ

3. Numerical implementation

To compute the reflection and the transmission coeffi-
cients of the slab, we need to solve (3) for given geome-
trical and material data. The unknown quantity, 〈f n〉ðzÞ, is
evaluated at equally spaced points, z¼ z1; z2;…; zp, in the
interval ½z0; zd�, and the integral in (3) is evaluated by the
use of Simpson's quadrature at the points of discretization.
The spatially discretized vector 〈f n〉 is denoted F .
Remembering that n is a multi-index of n¼ τσml, the

Fig. 1. The geometry of the stratified scattering region. The yellow region
denotes the region Vs, which is the domain of possible locations of local
origins, i.e., the interval ½z0 ; zd�. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of
this paper.)
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