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a b s t r a c t

Thermoplasmonics leads to enhanced heat generation due to the localized surface plas-
mon resonances. The measurement of heat generation is fundamentally a complicated
task, which necessitates the development of theoretical simulation techniques. In this
paper, an efficient and accurate numerical scheme is proposed for applications with
complex metallic nanostructures. Light absorption and temperature increase are,
respectively, obtained by solving the volume integral equation (VIE) and the steady-state
heat diffusion equation through the method of moments (MoM). Previously, methods
based on surface integral equations (SIEs) were utilized to obtain light absorption. How-
ever, computing light absorption from the equivalent current is as expensive as OðNsNvÞ,
where Ns and Nv, respectively, denote the number of surface and volumetric unknowns.
Our approach reduces the cost to OðNvÞ by using VIE. The accuracy, efficiency and cap-
ability of the proposed scheme are validated by multiple simulations. The simulations
show that our proposed method is more efficient than the approach based on SIEs under
comparable accuracy, especially for the case where many incidents are of interest. The
simulations also indicate that the temperature profile can be tuned by several factors, such
as the geometry configuration of array, beam direction, and light wavelength.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Heat caused by light illumination on metallic nanos-
tructures can be greatly enhanced by thermoplasmonics.
Numerous efforts have been recently dedicated to the
development of experimental and numerical methods to
reveal the underlying physics and improve application
designs [1–13]. Accurate temperature control is important
in many applications, e.g., photothermal therapy [14–17],
photothermal drug delivery [18–20], imaging and micro-
scopy [21–24], hot printing [25] and nanoantennas design
[26–28]. However, probing temperature at the nanoscale is
fundamentally a complicated task [1]. This highlights the
requirement for an accurate and efficient prediction of the

temperature increase. To theoretically study the thermo-
plasmonics of nanostructures, numerical frameworks
coupling electromagnetic waves must be combined with
that of thermodynamics because light absorption and heat
dissipation are competing mechanisms that govern the
actual temperature distribution in metallic nanostructures.
Light absorption relates to the solution of Maxwell's
equations and heat dissipation to that of the Poisson
equation if we restrict the heat study to the steady-state
regime.

Generally, the capability of the simulation is limited by
the cost of calculating light absorption, bðrÞ. Before com-
puting for bðrÞ, Maxwell's equations should be solved first.
Available simulation techniques include Finite-Difference
Time-Domain (FDTD) [29,30], Finite-Difference Frequency-
Domain (FDFD) [31], and the methods based on integral
equations (IEs) [32–38]. The most popular and efficient
approaches were critically compared in [37] with respect
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to their capabilities for practical cases. It has been shown
that methods based on surface IEs (SIEs) – named after
boundary element method (BEM) in many studies – are
superior to those based on volume IEs (VIEs) in terms of
efficiency. However, in this work, the volume integral
equation (VIE) is still chosen to solve Maxwell's equations
for complicated and relatively large-scale applications. In
contrast to the widely used discrete dipole approximation
(DDA) and its efficient variations [37,39–41], the method
of moments (MoM) is used to discretize the VIE. The
resultant approach is termed MoM-VIE for conciseness.

The reasons for our choice are as follows. Firstly, the
computational cost of bðrÞ is essentially dominated by the
evaluation of electric fields. MoM-VIE takes the field (or
flux) as unknowns. Consequently, it can provide the
required fields directly after the unknowns are solved. By
contrast, SIEs use surface equivalent current as unknowns.
An expensive integration operation has to be utilized to
compute the fields from the equivalent current. The
comparison in [37] was conducted with respect to the
solution of Maxwell's equations, which excludes the
computation of bðrÞ from the solved unknowns. Actually,
the latter can be a bottleneck in SIEs. Let Ns and Nv,
respectively, denote the number of unknowns in an SIE
solution and that in a VIE case for the same (homogeneous
dielectric) structure; the cost is about OðNsNvÞ in the SIE
case because that for a given point is OðNsÞ. Here, we utilize
the fact that the number of sampling points should be
proportional to Nv to achieve an acceptable spatial reso-
lution of bðrÞ. In contrast, the cost is only OðNvÞ in the VIE
case under a comparable accuracy. Secondly, because Ns or
Nv is generally large, an iterative solver is always used.
According to the study in [42], the PMCHW (Poggio, Miller,
Chang, Harrington, Wu) formulation is the most accurate
and reliable one among all the commonly used SIEs in
plasmonic simulations. However, the associated approach
often suffers from the slow convergence of the iterative
solution [42]. On the contrary, our approach, MoM-VIE,
always converges very fast. Thirdly, some other factors
should be taken into account for the efficiency issue. For
example, the solution of MoM-VIE and that of SIEs can be
both significantly accelerated by using the fast multipole
algorithm (FMA) [43,?]. The matrix–vector multiplication

in MoM-VIE is about NvlogNv
NslogNs

times slower than that in an

SIE solver for the same problemwith the FMA acceleration.

Typically, Ns � V2=3 and Nv � V , where V denotes the
volume of the particle [37]. As a consequence,
NvlogNv
Ns logNs

¼ 1:5V1=3. Theoretically, the larger the surface–

volume ratio (which can be indicated by Ns=Nv), the
stronger the light absorption could be. In turn, the larger
temperature increase can be obtained. The representative
applications are often with a large Ns=Nv. MoM-VIE takes
the additional advantage for such cases. The last, but not
the least, VIEs are inherently capable of heterogeneous
dielectric structures [43] in contrast to SIEs [?,45–47]. To
achieve a more visible view, we summarize the compar-
ison of SIEs and VIEs in Table 1. It should be noted that, for
particle ensembles, the cost of elevating bðrÞ in SIEs is less
than OðNsNvÞ, because bðrÞ within a given particle can be

computed from the sources on the particle's boundary. As
discussed in several studies [48–52], fluctuating current
sources due to thermal agitation will influence the spatial
distribution of the heat source density when particles/
structures are closely positioned. In this work, these sto-
chastic thermally fluctuating current sources are not taken
into consideration.

In the following section, we briefly describe the theo-
retical background, including the Poisson equation and the
employed VIE. The discussion is then presented on the
MoM discretization of the two types of equations. Simu-
lation results are discussed next to validate the proposed
scheme, including the studies on accuracy, efficiency and
capability. The controllability of the thermoplasmonics is
discussed along with the simulation study.

2. Theoretical background

Upon light illumination, electronic resonances known
as localized surface plasmon (LSP) resonances can be
excited for metallic nanostructures. The associated heat
generation is governed by the light absorption (or Joule
heating) with the heat source density (in W/m3):

b rð Þ ¼ω
2
ε0Im εr rð Þð Þ E rð Þj2;

�� ð1Þ

where r is the position vector in terms of a prescribed
coordinate system, ω is the frequency of the incident light,
ε0 is the permittivity of the background space and Im
(εrðrÞ) is the imaginary part of the relative permittivity of
the nanostructure.

2.1. Steady-state heat equation

For the continuous-wave (CW) illumination, the heat
dissipation resulting from light absorption is depicted by
the heat diffusion equation in the steady-state regime. If
we suppose that the nanostructure in question is embed-
ded in an infinite homogeneous background space, then
the pertinent equation is the Poisson equation of the form
[1],

∇ � ½κðrÞ∇TðrÞ� ¼ �bðrÞ; ð2Þ
where TðrÞ is the temperature at point r and κðrÞ is the
thermal conductivity. To simplify the problem, we assume
that the nanostructure is thermally homogeneous. At the
material interfaces, the boundary condition should be
satisfied, which, in our applications, corresponds to the
continuity of temperature T and that of its normal flux ∂T

∂n.
More precisely, the boundary condition is of the form

T þ ¼ T �

κe
∂T þ

∂n
¼ κi

∂T �

∂n
;

8<
: ð3Þ

where κe denotes the thermal conductivity of the exterior
background space and κi denotes that of the nanos-
tructure; T7 ¼ TðrÞ

��
rAΓ7 , where Γþ is the exterior

boundary surface and Γ- is the interior one. The combi-
nation of the Poisson equation (2) and the boundary
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