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a b s t r a c t

A general description of circularly symmetric Bessel beams of arbitrary order is derived in
this paper. This is achieved by analyzing the relationship between different descriptions of
polarized Bessel beams obtained using different approaches. It is shown that a class of
circularly symmetric Davis Bessel beams derived using the Hertz vector potentials pos-
sesses the same general functional dependence as the aplanatic Bessel beams generated
using the angular spectrum representation (ASR). This result bridges the gap between
different descriptions of Bessel beams and leads to a general description of circularly
symmetric Bessel beams, such that the Davis Bessel beams and the aplanatic Bessel beams
are merely the two simplest cases of an infinite number of possible circularly symmetric
Bessel beams. Additionally, magnitude profiles of the electric and magnetic fields, the
energy density and the Poynting vector are displayed for Bessel beams in both paraxial
and nonparaxial cases. The results presented in this paper provide a fresh perspective on
the description of Bessel beams and cast some insights into the light scattering and light-
matter interactions problems in practice.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Along with a wide application of various laser-based
optical instruments, such as Phase Doppler Anemometry
(PDA), Laser Doppler Velocimetry (LDV), Optical Tweezers and
many others, the investigation of interactions between
shaped laser beams and small particles becomes a very hot
topic in recent years, which attracts attention of researchers
from lots of areas [1,2]. In the analysis of various shaped
beams, there has been an increasing interest in Bessel beams
which were introduced by Durnin and co-workers [3,4]

almost three decades ago. Although ideal Bessel beams can-
not be generated in reality, high quality quasi-Bessel beams
can be generated using an axicon lens [5,6], spatial light
modulator (SLM) [7,8], or a combination of an axicon and a
spatial light modulator [9]. The geometry of a quasi-Bessel
beam generated by an axicon is shown in Fig. 1. Due to the
special properties of Bessel beams, including propagation
invariance [10], self-reconstruction, long focal depth of field
[11,12] as well as the transfer of orbital angular momentum
and spin angular momentum to matter [13], prospective
applications of Bessel beams can be found in various fields,
such as optical communication, accurate optical measure-
ment, optical manipulation of small particles, and imaging
[14,15].

The description of shaped beams is a fundamental
issue. It plays a key role in the analysis of beam properties,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jqsrt

Journal of Quantitative Spectroscopy &
Radiative Transfer

http://dx.doi.org/10.1016/j.jqsrt.2016.07.011
0022-4073/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author at: School of Physics and Optoelectronic Engi-
neering, Xidian University, 710071 Xi’an, China.

E-mail address: wangjiajie@xidian.edu.cn (J.J. Wang).

Journal of Quantitative Spectroscopy & Radiative Transfer 184 (2016) 218–232

www.sciencedirect.com/science/journal/00224073
www.elsevier.com/locate/jqsrt
http://dx.doi.org/10.1016/j.jqsrt.2016.07.011
http://dx.doi.org/10.1016/j.jqsrt.2016.07.011
http://dx.doi.org/10.1016/j.jqsrt.2016.07.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2016.07.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2016.07.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2016.07.011&domain=pdf
mailto:wangjiajie@xidian.edu.cn
http://dx.doi.org/10.1016/j.jqsrt.2016.07.011
http://dx.doi.org/10.1016/j.jqsrt.2016.07.011


beam propagation as well as light-matter interactions. As
an exact solution of the scalar wave equation, a basic
description of Bessel beams in scalar version [3,4] was
applied when the Bessel beam was introduced. For an on-
axis Bessel beam propagating along the z axis, the general
expression for the scalar field is described by
ψðρ;ϕ; z; tÞ ¼ ψ0JnðktρÞeinϕe� iðkzz�ωtÞ, where ψ0 is the
amplitude of the field, and JnðU Þ is the n-order Bessel
function of the first kind. The parameters ρ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
and

ϕ¼ tan�1ðy=xÞ are the radial distance and the azimuthal
angle in the transverse plane ðx; yÞ, respectively. The
transverse and longitudinal wave numbers are
kt ¼ k sin α0 and kz ¼ k cos α0, respectively. The wave-
number is k, and α0 is the half-cone angle of the Bessel
beam which is defined with respect to the axis of wave
propagation. If α0 ¼ 0, the scalar Bessel beam reduces to a
scalar plane wave. The time-dependent part of the wave
expðiωtÞ is used and omitted throughout in this paper,
with ω being the angular frequency. So far, there are a
number of studies based on the scalar field description
[16–19], which gives satisfactory results under the paraxial
conditions, e.g the spot size of the beam is much larger
than the wavelength. A vectorial treatment is required for
an adequate description of polarized electromagnetic wave
radiation and scattering, especially in nonparaxial cases
where tightly focused Bessel beams are used, e.g. in optical
tweezers where small particles are manipulated by a
tightly focused laser beam [11,13,20]. The intensity profile
of a scalar Bessel beam is circularly symmetric, while the
intensity profile of a polarized Bessel beam can be circu-
larly symmetric or asymmetric [21,22]. The Bessel beams
with a circularly symmetric distribution of energy density
have been called circularly symmetric Bessel beams,
whose Poynting vector component along the propagation
direction is also circular symmetric.

Although ideal Bessel beams can hardly be generated in
reality, it is common practice to start with the simplest
theoretical assumption of idealized fields, which can cast
insights into practical analysis where quasi-Bessel beams
are applied. Several vectorial approaches have been pro-
posed to describe ideal Bessel beams, with exact vectorial
solutions to the Maxwell's equations. Bouchal and Olivík

[23] derived expressions for polarized Bessel beams of
arbitrary order as the solution to the vector Helmholtz
equation, in which radial, azimuthal, circular and linear
polarizations were analyzed. Recently, facilitated by the
application of the Hertz vector potential [24], the Bessel
beams of transverse magnetic (TM) and transverse electric
(TE) mode [25,26] and the linearly and circularly polarized
Bessel beams [27] were derived in a rather simple way.
This is due to the fact that the potentials are more fun-
damental quantities than the electric and magnetic fields.
Once the potentials are known, the fields can be obtained
by differentiation. In this procedure the derivation of the
fields is implemented in the Lorenz condition when line-
arly polarized vector potentials are used, which is similar
to the procedure used by Davis [28] for the development of
a Gaussian beam model. Thus the Bessel beam derived
using the vector potential has been called a Davis Bessel
beam [29] to distinguish it from the Bessel beam obtained
using the angular spectrum representation (ASR), which is
commonly called an aplanatic Bessel beam since it was
originally proposed for an aplanatic optical system [30].
The ASR method was introduced by Cizmar et al. [31] to
describe a focused zero-order aplanatic Bessel beam gen-
erated by an axicon lens. Later it was extended to the
description of Bessel beams of higher-order by Chen et al.
[32,33]. More detailed expressions of higher-order apla-
natic Bessel beams were presented by Mitri et al. [34] in a
study of resonance scattering of a dielectric sphere and
used recently by Yang and Li [35] to calculate the optical
force exerted on a Rayleigh particle.

Although various descriptions of polarized Bessel
beams derived using different approaches are available in
the literature, different approaches give seemingly differ-
ent answers for the fields. This situation casts confusion
and sometimes leads to a misuse of Bessel beam expres-
sions. Thus a clear picture of the connection between
different descriptions of Bessel beams is necessary for
easier applications in practice as well as providing some
insights into the nature of an ideal Bessel beam. This was
recently done for a zero-order Bessel beam by Lock [29].
The aplanatic Bessel beam of zero-order generated with
the ASR was found to have a same functional dependence

Fig. 1. Geometry of a quasi-Bessel beam generated using an axicon lens. Half-cone angle of the Bessel beam is α0. A Cartesian coordinate system ðX; Y ; ZÞ
and a corresponding cylindrical coordinate system ðρ; ϕ; zÞ are used.
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