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a b s t r a c t

The gap dependence of radiative energy transfer due to propagating waves between two
identical metallic half-spaces separated by vacuum is investigated. The dielectric function
of the metallic half-spaces is described by the Drude model. Analytical expressions for the
minimum radiative heat transfer coefficient, hmin, and the gap, dmin, at which the mini-
mum value of radiative transfer is attained are determined in terms of the parameters of
the dielectric function and the absolute temperature T. We show that hminpT2 in the high
temperature limit and hminpT7=2 in the low temperature limit.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Radiative transfer between two closely spaced objects
can exhibit features not captured by the classical theory of
radiative transfer [1] because of near-field phenomena,
such as the collective influence of interference and dif-
fraction effects and the tunneling of evanescent waves.
One of the most striking features is the enhancement of
radiative transfer beyond the blackbody limit due to tun-
neling of surface phonon polaritons [2–5]. This enhance-
ment has been observed experimentally by measuring
radiative transfer between a microsphere and a planar
substrate [6]. Though most of the recent studies on near-
field enhancement have focused on the effect of surface
phonon polaritons, what piqued the interest of researchers
[7] in the mid-to-late 1960s was the enhancement of
radiative transfer between metallic surfaces [7–11] at

small gaps because of its importance in cryogenics. In this
paper, we investigate the gap dependence of radiative
transfer between two planar metallic surfaces. Unlike
Polder and van Hove, who investigated this problem pre-
viously [11], our focus is not on the enhancement due to
evanescent waves but rather on an initial decrease in
radiative transfer as the gap decreases.1 In contrast to
enhancement due to tunneling of evanescent waves,
which becomes apparent at sub-micron gaps (usually
≲500 nm), the minimum in radiative transfer occurs at
larger gaps (� 2 μm) [11]. Though evanescent waves
contribute to radiative transfer at such gaps, as we will
show, the decrease in radiative transfer can be explained
by restricting ourselves to propagating waves. We realized
in 2014, at NanoRad2014 (Second International Workshop
on Nano-Micro Thermal Radiation) held in Shanghai, that
Tsurimaki et al. [12] were also working on a similar pro-
blem. Tsurimaki et al. focus on the transition between the
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far-field regime and the near-field regime between dif-
ferent types of materials (silicon carbide half-spaces and
aluminum half-spaces). In this paper, we focus on radiative
transfer between metallic half-spaces and the emphasis is
on deriving analytical results.

The structure of the paper is as follows: In Section 2, we
will describe briefly the theoretical basis for determining
the radiative transfer between two identical half-spaces
separated by a vacuum gap. In Section 3, we derive
expressions for gap dependent radiative heat transfer
coefficient due to propagating waves. Analytical expres-
sions for radiative transfer at vacuum gaps beyond the
value at which the minimum radiative transfer occurs are
derived in Section 3.1; analytical expressions for vacuum
gaps from contact to the minimum gap are derived in
Section 3.2. In Section 4, analytical expressions for the
minimum gap dmin and the minimum heat transfer coef-
ficient hmin are obtained, from which the dependence of

hmin on the temperature and other optical properties of the
metals can be extracted. The influence of evanescent
waves and the possibility of measuring the decrease in
radiative transfer are discussed.

2. Theoretical framework

Even though we focus only on propagating waves,
classical theory of radiative transfer is insufficient to cap-
ture interference effects due to multiple reflections of
plane waves. Hence, we use Rytov's theory of fluctuational
electrodynamics [13,14] and the dyadic Green's function
formalism to model heat flow between two half-spaces
separated by a vacuum gap [15]. Since the theory of fluc-
tuational electrodynamics has been discussed extensively
in many publications [15,16], we use the well-known
result for the linearized radiative heat transfer coefficient
between two half-spaces of identical material separated by
a vacuum gap of thickness d (see Fig. 1):
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where j¼ s; p refer to transverse electric and transverse
magnetic polarizations, respectively, y¼ ℏω=kBT is a non-
dimensional frequency, ω is the angular frequency, kB is
Boltzmann's constant, 2πℏ is Planck's constant, T is the
temperature of the two objects, c is the speed of light in
vacuum, k0 ¼ ω

c , x¼ kz0
k0

is the non-dimensionalized z-
wavevector in vacuum (kz0 is the dimensional wavevector),
T j is the generalized transmissivity and is related to the

Nomenclature

ΔFF relative change in htot relative to the far-field
heat transfer coefficient hff

T j polarization dependent transmissivity
c speed of light in vacuum
d thickness of vacuum gap between two half-

spaces
dmin vacuum gap at which hpw attains a minimum
hff far-field radiative heat transfer coefficient
hpw radiative heat transfer coefficient due to

propagating waves
hðlgÞpw contribution to radiative heat transfer coeffi-

cient from modes active at larger gaps
hðsgÞpw contribution to radiative heat transfer coeffi-

cient from modes active at smaller gaps
htotðdÞ total (propagating and evanescent) radiative

heat transfer coefficient at vacuum gap d
k0 ω=c, wavenumber in free space
kB Boltzmann's constant
kz0 z-direction wavenumber in free space
kz1 z-direction wavevector in half-space
n1 real part of

ffiffiffiffiffi
ε1

p

Rj polarization dependent Fresnel reflection
coefficient

Ra
j approximation to Rj

T temperature of half-spaces
x kz0=k0, non-dimensional wavenumber
xn non-dimensional wavenumber for nth spike in

T jðx; yÞ
z non-dimensional frequency, ω=γ
ϵγ non-dimensional damping frequency, ℏγ=ðkBTÞ
ϵωp non-dimensional plasma frequency, ℏωp=ðkBTÞ
γ damping frequency in Drude model of ϵðωÞ
ℏ Planck's constant divided by 2π
κ1 imaginary part of

ffiffiffiffiffi
ε1

p
λ wavelength of electromagnetic wave in free

space, 2π=k0
ω angular frequency of electromagnetic wave
ωp plasma frequency in Drude model of εðωÞ
σ Stefan–Boltzmann constant
ε dielectric function
ε1 dielectric function of half-space
ε inverse of non-dimensional gap, kBTd

πcℏ

h i�1

y hω=ðkBTÞ
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Fig. 1. Two planar, metallic half-spaces are separated by a vacuum gap d.
It is assumed in our case that the two half-spaces are silver (ε1 ¼ ε2 ¼ εAg).
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