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a b s t r a c t

We suggest here a method for construction of a bilinear expansion for an angle-averaged
redistribution function. This function describes the elementary act of a photon scattering
by a model two-level atom with the upper level broadened due to radiation damping. An
eigenvalue and eigenvector determination problem is formulated and the relevant
matrices are found analytically. Numerical procedures for their computations are elabo-
rated as well. A simple method for the numerical calculations accuracy evaluation is
suggested. It is shown that a family of redistribution functions describing the light scat-
tering process within the spectral line frequencies can be constructed if the eigenvalue
problem for the considered function is solved. It becomes possible if the eigenvalues and
eigenvectors with the appropriate basic functions are used. The Voigt function and its
derivatives used as basic functions are studied in detail as well.

& 2016 Published by Elsevier Ltd.

1. Introduction

In the theory of spectral lines formation various
assumptions concerning the photon-atom elementary
interaction mechanism had been considered. Historically
the simplest assumption assuming the elementary act of
scattering not affecting the photon energy was considered
first. This version of the simplified interaction is referred
usually as the coherent or monochromatic scattering.
Mathematical methods for solving the light scattering
problems had been progressively developed especially for
this physical assumption.

However, it is clear, that any physical interaction
between systems of physical objects, generally speaking,
leads to the energy exchange between interacting objects.
Therefore, it was obvious from the very beginning that any
realistic consideration of the light scattering issues should
take into account the possible energetic exchanges

described by the known cross sections of the considered
processes. To our knowledge, Eddington was the first to
point to the importance of non-coherency when the light
scattering in spectral line frequencies is considered [1].

That was requiring a new approach for description of
photon's energy change due to its interaction with the
scattering medium. The simplest from the mathematical
description viewpoint assumption is, so called, complete
frequency redistribution of photons, having a rather
transparent physical meaning: the scattering atoms “do
not remember” the energetic status of absorbed photons
and, therefore, photons are re-emitted with portions of
energy according to the emission coefficient depending on
the atom's internal features only. Because of that not any
correlation exists between the frequencies of absorbed and
re-emitted photons. This approximation was suggested in
early 40 s of the last century [2].

In general, as follows from the quantum electro-
dynamics principles, any single interaction between a
photon and a scattering quantum-mechanical object
depends on the geometry of interaction and the energies
of interacting particles. Hence, one should take all the
relevant factors into account. For the further simplification
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purposes a new probabilistic quantity instead of physical
cross sections was introduced into the radiative transfer
theory, called redistribution function. Moreover, mostly
the angle-averaged redistribution function denoted rðx0; xÞ
is used in practice which considers the medium physical
conditions only implicitly. As far as we know, the first
classification of derived in that way redistribution func-
tions has been done by Hummer [3] who has considered
different physical cases separately.

It is noteworthy, that the direct calculations of the
redistribution functions sometimes are rather laborious
and their application for practical usage encounters huge
difficulties. Therefore, mostly some approximate methods
are carried out for their calculations providing required
qualitative and quantitative accuracy for comparatively
less efforts. The method of redistribution functions sub-
stitution for their bilinear expansion has the advantage
that allows one to test different approaches of the trun-
cated sums instead of the corresponding infinite series. On
the other hand, the bilinear expansions of redistribution
functions are extremely handy tools if one uses the Prin-
ciple of Invariance (PI) to solve the radiative transfer pro-
blems (see, for example, [4–8] and references therein).
Therefore, we consider the possibility of building an
“artificial” expansion, in this paper, for a redistribution
function never expanded into bilinear series.

2. The redistribution function rIIðx0; xÞ

Let us first redefine the redistribution function rðx0; xÞ
which has a rather simple physical meaning: the quantity
rðx0; xÞdx represents the probability that a photon with the
dimensionless frequency x0 will be absorbed by an atom
and re-emitted then in the frequency interval ðx; xþdxÞ. The
introduced dimensionless frequencies show the distance of
photon's frequency νðν0Þ from the line center frequency ν0
in Doppler half widths x¼ ν�ν0

ΔνD

� �
. This redistribution

function differs from one defined by Hummer [3] by the

constant factor π1
4U 0;σð Þ

� ��1
, where the function

U x;σð Þ ¼ σ
π

Z 1

�1

expð�t2Þ
ðx�tÞ2þσ2

dt; ð1Þ

is the well known Voigt function and σ ¼ ΔνT
ΔνD, where ΔνT is

the total half-width of the line caused by all the broadening
mechanisms taken into account.

The redistribution function describing the photon
scattering within the line frequencies of the model two-
level atom the upper level of which is broadened due to
radiation damping has been independently derived by
Henyey [9], Unno [10] and Sobolev [11] assuming that in
the atom's reference frame the scattering is coherent.
Then, using also Hummer's [3] designation one can
represent it in the following form:

rII x0; xð Þ ¼ 1
πUð0;σÞ

Z 1

jx � x j
2

exp �t2
� �

arctan
xþt
σ

�arctan
x�t
σ

� �
dt:

ð2Þ

In the expression (2) we used the following notations:
x ¼ supðx0; xÞ and x ¼ infðx0; xÞ.

It is noteworthy that there have been known bilinear
expansions for two out of four redistribution functions
described in the Hummer [3], namely, rIðx0; xÞ and rIIIðx0; xÞ
before the paper [3] appeared. However, up to nowadays
not any “natural” bilinear expansion has been revealed for
the function rIIðx0; xÞ. Therefore, we are trying to create
such a bilinear expansion on the base of an artificial pro-
cedure using for that a system of some appropriate basic
orthogonal functions for building of corresponding
eigenfunctions.

In order to construct numerically such an expansion, let
us first introduce here another representation of rIIðx0; xÞ
derived by Nikoghossian [12] (see, also, Heinzel [13])

rII x0; xð Þ ¼ σ
πUð0;σÞ

Z 1

�1

rIðx0 þt; xþtÞ
t2þσ2

dt: ð3Þ

Taking into account the following expression for the δ-
function:

lim
σ-0

σ
π

1
t2þσ2

¼ δ tð Þ; ð4Þ

one finds easily that the function rIIðx0; xÞ transforms into
the rIðx0; xÞ when σ ¼ 0.

On the other hand, the function rIðx0; xÞ allows the fol-
lowing bilinear expansion first derived by Unno [14] (see
also [3]):

rI x0; xð Þ ¼
Z 1

jx j
exp �t2

� �
dt ¼

X1
k ¼ 0

α2kðx0Þα2kðxÞ
2kþ1

; ð5Þ

where

αk xð Þ ¼ ð2kπ
1
2k!Þ� 1

2Hk xð Þexp �x2
� � ð6Þ

and Hk(x) are the Hermit polynomials.
The obvious connection between functions rIIðx0; xÞ and

rIðx0; xÞ expressed by relation (3) allows to suggest the
functions (6) as basic ones for constructing the eigen-
functions of rIIðx0; xÞ. Taking into account this connection,
one can search the bilinear expansion for rIIðx0; xÞ in the
following form:

rII x0; xð Þ ¼
X1
k ¼ 0

ω2kðx0;σÞω2kðx;σÞ
ζkðσÞ

; ð7Þ

where

ω2kðx;σÞ ¼
X1
m ¼ 0

γkmðσÞα2kðxÞ: ð8Þ

The vector ζkðσÞ and matrix γkmðσÞ
� 	

are, correspond-
ingly, the eigenvalues and eigenfunctions of the following
problem (see, for example, [15,4]):

X1
m ¼ 0

γkmðamn�ζkðσÞbmnÞ
� 	¼ 0; ð9Þ

where

amn ¼
Z 1

�1
α2mðxÞα2nðxÞdx; ð10Þ
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