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a b s t r a c t

This short communication interprets the delta-fit technique in a context of similarity
transformation and the correction to the source function, and derives the analogous form
of the method to be applied for the scattering phase matrix. To adapt the delta-fit method
to vector radiative transfer, the mathematically exact form of the similarity principle is
used in the theoretical development. Some examples of relevant radiative transfer
simulations are also presented for atmospheric ice particles. The performance of the
adopted delta-fit method is comparable to the delta-M method with single scattering
correction except for worse delta-fit performance for polarized radiance calculations in
forward directions.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the application of vector radiative transfer solvers to
simulate, for example, ice cloud reflectivity and transmis-
sivity, the presence of large particles triggers a trade-off
between the accuracy and speed of the simulation. The
scattering properties of such large particles cannot be
appropriately represented for the radiance simulation with
an affordable directional resolution (number of streams).
Anisotropic scattering in the planetary atmosphere has
been a major challenge, and Sobolev [1] discusses multiple
methods of approximation for highly anisotropic scatter-
ing problems. Current common practice is to adapt a
truncation technique to minimize error due to the reduced
directional resolution used in the numerical radiative
transfer simulations.

The δ-fit method developed by Hu et al. [2] fits the
scattering phase function with a limited number of
Legendre polynomials to accurately simulate the radiance.
The method contrasts with the δ-M method developed by
Wiscombe [3], which focuses on accurate flux simulation.
Each method starts with the following plane-parallel
radiative transfer equation:

�μ
∂I
∂τ

¼ � I τ; μ;ϕð Þþϖ τð Þ
4π
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P τ; cosΘð ÞI τ; μ0;ϕ0ð Þdϕ0
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where τ is optical thickness, μ is the cosine of the zenith
angle, ϕ is the azimuth angle, Iðτ;μ;ϕÞ is the radiance
propagating along the direction ðμ;ϕÞ, ϖ is the single
scattering albedo, P cosΘ

� �
is the phase function value at

scattering angle Θ, and BðTÞ is the blackbody emission at
temperature T .

Each method uses the following similarity transfor-
mation, which defines scaled variables with an arbitrary
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factor f in the form:

τ� ¼ 1� fϖð Þτ; ð2Þ

ϖ� ¼ 1� f
1� fϖ

ϖ; ð3Þ

P� cosΘ
� �¼ 1

1� f
P cosΘ
� ��4πfδ 1� cosΘ

� �� �
; ð4Þ

where δ 1� cosΘ
� �

is the Dirac delta function peaked in
the forward scattering direction. Substituting Eqs. (2)–(4)
into Eq. (1) yields the same form for the radiative transfer
equation but now for the scaled quantities indicated by the
asterisk symbol; namely,
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In the classic approach (e.g. [4]), the original phase
function P cosΘ

� �
is approximated by the sum of a delta

function and a phase function without a forward peak
P�

trunc cosΘ
� �

.

P cosΘ
� �� 1� fð ÞP�

trunc cosΘ
� �þ4πfδ 1� cosΘ

� �
; ð6Þ

and the similarity transformation is derived as a con-
sequence of the approximation. Eqs. (2)–(4) define an
approximate radiative transfer problem in the classic
approach.

However, the similarity transformation itself is math-
ematically exact [5,6], and it is beneficial for our discussion
to accept the exact similarity transformation to unam-
biguously derive the vectorized form of the δ-fit method.
Specifically, we interpret Eqs. (2)–(4) as definitions of
scaled quantities τ�, ϖ�, and P� cos Θ

� �� �
without

approximations. When Eqs. (2)–(4) are strictly satisfied,
the solution of Eq. (5) gives an exact solution of the ori-
ginal radiative transfer equation Eq. (1).

By accepting the exact similarity transformation, trun-
cation techniques are seen as optimization techniques.
Truncation techniques simultaneously adjust parameter f
and P�

N cos Θ
� �� �

, which is a reconstructed phase function
from N coefficients (c.f. Eq. (14)), to reduce the error in the
flux or radiance. A similar interpretation is attempted by
Mitrescu [6], who showed that the parameter f depends
on the truncation method and the number of streams, in
addition to the original phase function. Some systematic
evaluations of these truncation techniques have been
reported in the literature [7,8].

This short communication applies the framework dis-
cussed above, and interprets the δ-fit method as a cor-
rection to the source function, following the approach
taken by Rozanov and Lyapustin [7]. The outcome of the
theoretical development is an adaptation of the δ-fit
method to vector radiative transfer. Some adjustments of
the present method are provided for numerical imple-
mentation as a user-friendly computer program.

2. The δ-fit method

This section briefly summarizes the δ-fit method based
on the original paper by Hu et al. [2]. The traditional δ-fit
method starts with the expansion of the phase function in
terms of Legendre polynomials Ps xð Þ,

P xð Þ ¼
X1
s ¼ 0

α sð Þ
1 PsðxÞ; ð7Þ

where x¼ cosΘ and α sð Þ
1 is the expansion coefficient of

order s. The δ-fit method approximates this phase function
with a limited number of coefficients N that are the result
of fitting in the form:

P̂N xð Þ ¼
XN
s ¼ 0

α̂ sð Þ
1 PsðxÞ; ð8Þ

where a hat indicates that the quantity is a result of fitting.
The standard least squares method is employed to

minimize the sum of squared differences between 1 and
the ratio of the reconstructed phase function P̂NðxÞ to the
original phase function PðxÞ:

ε¼
Xm
i ¼ 1

P̂NðxiÞ
PðxiÞ

�1

 !2

wi; ð9Þ

where wi is the step-function weight defined by the
truncation angle Θtrc:

wi ¼
1; xo cos Θtrc

0; xZ cos Θtrc:

(
ð10Þ

Linear least square fitting based on Eq. (9) by singular
vector decomposition yields a set of coefficients α̂ sð Þ

1 . Once
a set of coefficients is obtained, the similarity transfor-
mation of the radiative transfer equation is utilized to
satisfy the normalization condition of the phase function.
Specifically, the following scaling adjustments are applied:

1� f ¼ α̂ 0ð Þ
1 ; ð11Þ

α̂ sð Þ�
1 ¼ α̂ sð Þ

1
1� f

: ð12Þ

The scaling factor (truncation factor) f and fitted, scaled
expansion coefficients α̂ sð Þ�

1 are used in an arbitrary solver
of the scaled radiative transfer equation.

The fitting process in Eq. (9) can be rewritten as a linear
least square fitting with weight inversely proportional to
the variance in the tabulated phase function in the form:

ε=ε12 ¼
Xm
i ¼ 1

P̂N xið Þ�PðxiÞ
� �2 wi

ε1PðxiÞð Þ2
; ð13Þ

where ε1 is the precision of the phase function. Note that
ε1PðxiÞð Þ2 is the variance of the phase function at the ith
data point. The variance is due to the numerical imple-
mentation of light scattering calculations and the numer-
ical representation of a phase function. The precision, ε1, is
chosen as the largest value among machine precision,
table precision, and the relative error in the numerical
algorithm.
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