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a b s t r a c t

Radiance and polarization patterns in an optically deep region, the so-called diffusion
region or asymptotic region, of a homogeneous atmosphere or ocean, depend mainly on
the scattering phase matrix and the single-scattering albedo of the medium. The radiance
and polarization properties in the diffusion region for an arbitrary scattering phase matrix
can be obtained in terms of a series of the generalized spherical functions. The number of
terms is closely related to the single-scattering albedo of the medium. If the medium is
conservative, the radiance is isotropic in conjunction with no polarization. If the single-
scattering albedo is close to 1, several terms are sufficient to obtain the patterns, in which
the degree of polarization feature is less than 1%. If the medium is highly absorptive, more
expansion terms are required to obtain the diffusion patterns. The examples of simulated
radiance and polarization patterns for Rayleigh scattering, Henyey–Greenstein–Rayleigh
scattering, and haze L and cloud C1 scattering, defined by Deirmendjian, are calculated.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The domain optically deep in a homogenous atmo-
sphere or ocean, far from the top and bottom boundaries,
is defined as the diffusion region or the asymptotic region.
If the medium is conservative, the photons have made so
many scatterings that they lose “memories” of the direc-
tion from which they came deep into the medium and
hence the radiance eventually becomes isotropic in con-
junction with no polarization. If the medium is non-con-
servative, the radiance and polarization in the diffusion
region, which will be proportional to expð�kτÞ, where k
and τ are the diffusion exponent and the optical depth,
depend primarily on the inherent optical properties of the
medium, that is, the scattering phase matrix and the

single-scattering albedo, but not on the initial conditions.
Moreover, the patterns are independent of the
azimuthal angle.

Radiance and polarization properties in the diffusion
region have been extensively studied from both theoretical
and experimental perspectives [1–14]. The analytical
radiance and polarization patterns for Rayleigh scattering
have been reported, and patterns for haze L and cloud C1
scattering have been numerically solved using the Lobatto
quadrature by Kattawar and Plass [15]. The radiance pat-
tern in the diffusion region is expressed in terms of
Legendre polynomials by van de Hulst [16]. As reported by
Kattawar and Plass [15], the error of the radiance derived
from the scalar theory can be as much as 16.4%. Subse-
quently, polarization must be included to obtain an accu-
rate result. The radiation field of polarized light of a semi-
infinite atmosphere has been thoroughly studied in terms
of the generalized spherical functions (GSFs) [17–19] by
Domke and de Rooij [20,21]. In this study, the single
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scattering albedo ω0 is factored out instead of incorpo-
rated in the phase matrix and the diffusion exponent k is
given for convenience in the calculation. The characteristic
equation is explicitly written as a polynomial of the single
scattering albedo ω0. Moreover, the patterns for Rayleigh
scattering, Henyey–Greenstein–Rayleigh scattering, and
haze L and cloud C1 scattering defined by Deirmendjian
[22] are simulated, which are validated in terms of the
adding-doubling method in the limit of an extremely large
optical depth.

2. Solution for radiance and polarization with an
arbitrary scattering matrix

2.1. Expansion using generalized spherical functions

The Stokes parameters I;Q ;U;V are independent of
azimuthal angle in the diffusion region, and U and V are
zero. In the diffusion region, if the medium is non-con-
servative, i.e., the single scattering albedo ω0o1, the
integral equation of the radiance and polarization patterns
PðμÞ and TðμÞ can be written as [8,15,16]
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where k is the diffusion exponent, μ is the cosine of the
zenith angle, which is positive for upwelling directions
and negative for downwelling directions, PðμÞ and TðμÞ are
the corresponding diffusion patterns of the Stokes ele-
ments I and Q, and
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2;�2 terms are the GSFs, whose
initial functions and recurrence relations can be found in
[19].

The diffusion patterns PðμÞ and TðμÞ can also be
expanded in terms of the GSFs
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Upon substituting Eqs. (7)–(10) into Eq. (1), and using

the orthogonal properties of the GSFs we arrive at the
following recurrence relationships
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2.2. Truncation and characteristic equation

The diffusion exponent k and the single-scattering
albedo ω0 are a coupled pair. A characteristic equation is
necessary to find ω0 if k is known, and vice versa. This
study assumes k is known for convenience. In the expan-
sions of the scattering phase matrix, a finite order N is
reasonably assumed, or, αn

1 ¼ αn
2 ¼ βn

1 ¼ 0 if n4N More-
over, the expansion coefficients an ¼ bn ¼ 0 if n4N The
recurrence equations are decoupled for n4N as
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The recurrence equations are almost the same as for
the GSFs Pn

0;0 and Pn
0;2, except that the argument �γ here is

smaller than �1 while �1rμr1 The expansions in Eq.
(7) are valid only if in-0 and qn-0 when n-1 First,
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