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a b s t r a c t

In simulations of periodic or symmetric geometries, computational domains are reduced
by imaginary boundaries that exploit the symmetry conditions. Two boundary conditions
are proposed for Discrete Ordinate Methods to solve axisymmetric radiation problems.
Firstly, a specularly reflective boundary condition similar to that is used in Photon Monte
Carlo methods is developed for Discrete Ordinate Methods. Secondly, the rotational
invariant formulation is revisited for axisymmetric wedge geometries. Correspondingly, a
new rotationally invariant boundary condition specially designed for axisymmetric pro-
blems on wedge shape is proposed to enforce the rotational invariance properties pos-
sessed by the radiative transfer equation (RTE) but violated by three-dimensional con-
ventional Discrete Ordinate Methods. Both boundary conditions have the advantage that
the discretization and linear equation solution procedures of conventional three-
dimensional DOM are not affected by changing to a reduced geometry. Consistency,
accuracy and efficiency of the new boundary conditions are demonstrated by multiple
numerical examples involving periodic symmetry and axisymmetry. A comparison
between specularly reflective boundary conditions and the rotationally invariant for-
mulation shows that the latter offers several advantages for wedge geometries. In other
symmetry conditions, when the rotational invariant formulation is not applicable, spec-
ular reflective boundary conditions are still effective.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Periodic and symmetric geometries are frequently
encountered in engineering applications. Examples of such
geometries include periodic structures, plane symmetry
and axisymmetry. In the simulations of these problems,
flow variables are solved for only a section of the domain.

The computational domain is separated from the rest by
imaginary boundaries, upon which symmetric constraints
as opposed to physical conditions are applied.

While symmetry constraints may be easily expressed
into mathematical formulas for scalar and vector fields as
frequently performed in CFD simulations, they present
challenges for radiative intensities. This is because the
radiative intensities are functions of both spatial and
directional coordinates [1]. Plane and rotational symmetric
conditions are complicated by the additional directional
variations. As an example, scalar flow variables in an axi-
symmetric problem are only functions of radial and axial
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locations. In flow solvers designed for three-dimensional
coordinates only, a wedge geometry that has only one
layer of cells in the azimuthal direction may be employed.
Symmetry conditions are imposed on the imaginary
wedge planes. However, even in these axisymmetric pro-
blems, the radiative intensities are three dimensional, i.e.,
light propagation is not confined to the plane formed by
the radial and axial direction vectors. Such issues are also
observed in Photon Monte Carlo (PMC) methods for
radiative transfer. In PMC methods, the wedge planes may
be treated as specularly reflective boundaries, i.e., a ray
hitting the wedge plane is reflected back into the com-
putational domain like hitting a perfect mirror.

When applying Discrete Ordinate Methods [1,2] to
axisymmetric simulations, three methods are typically
employed. In the first method, the radiative transfer
equation (RTE) is solved for ordinate intensities in a full
three-dimensional axisymmetric domain, as in Refs. [3–5].
This method cannot take advantage of symmetry to reduce
computational cost. In the second method, the RTE is for-
mulated in cylindrical coordinates directly as in Refs. [6–
11]. However, this approach requires dedicated imple-
mentations of DOM equations for two-dimensional pro-
blems. In the third method, a reduced mesh based on
symmetry is used to discretize the RTE formulated for
Cartesian coordinates [12,13]. Axisymmetry is enforced by
special treatment of the wedge boundaries. This method
simplifies the implementation of the RTE, because the
same equations, discretization and linear equation solu-
tion methods are used for both reduced and full geome-
tries. However, the resulting new wedge boundaries
require different treatment from that is employed for
scalar or vector partial differential equations.

In this work, after a short review of the Discrete Ordi-
nate Methods and their Finite Volume discretizations in
Sections 2.1 and 2.2, a specularly reflective boundary
condition is proposed in Section 2.3 for Discrete Ordinate
Methods in recognition of the fact that the ordinates have
similarities to rays in Photon Monte Carlo methods. The
specularly reflective boundary conditions are expressed as
mathematical boundary conditions for the first-order
partial differential equations that govern spatial varia-
tions of each ordinate depending on the spatial relation-
ship between the surface normal and the ordinate direc-
tions. It is shown that the implementation of the spec-
ularly reflective boundary condition varies with the finite
volume interpolation scheme for the face values. The
specularly reflective boundary condition can be applied to
both periodic and axisymmetric reduced geometries. In
Section 2.4, a rotationally invariant formulation is derived
for axisymmetric problems in wedge geometries. Its
implementation results in a specially designed boundary
condition for the wedge boundaries (Section 2.5), so that
the remaining Finite Volume discretization of the DOM
equations is unchanged. Similarities and differences of the
two boundary conditions are highlighted in Section 2.6.
Several tests are performed in Section 3 to further examine
the consistency, accuracy and efficiency of the two
boundary conditions in reduced geometries.

2. Theoretical background

2.1. Discrete ordinate methods

In this section, the Discrete Ordinate Methods for sol-
ving the radiative transfer equation are briefly reviewed.
The presentation only focuses on necessary content for the
new development as opposed to completeness. We will
limit the theoretical discussion to non-scattering partici-
pating media, because the treatment of scattering is not
essential to this work and does not impose new technical
difficulties. Readers are referred to Ref. [1] for more com-
prehensive discussions of the DOM and Ref. [2] for the
review of recent developments.

The radiative transfer equation (RTE) for a radiatively
participating gray medium with emission and absorption
is a first order differential equation:

ŝ �∇xIðx; ŝÞ ¼ κIbðxÞ�κIðx; ŝÞ ð1Þ
where x is the spatial coordinate, ŝ a unit direction vector,
κ the absorption coefficient, I the radiative intensity and Ib
the blackbody intensity (or Planck function). The subscript
x on the gradient operator ∇ emphasizes that the gradient
is with respect to spatial coordinates only.

In Discrete Ordinate Methods the directional variation
of the radiative intensity is expressed by intensities on a
set of prescribed directions, known as the ordinates. For
each of the n ordinates ðŝ i; i¼ 1;…;nÞ, the corresponding
intensity ðIi ¼ Iðx; ŝ iÞÞ is determined by solving the RTE for
direction ŝ i, i.e.,

ŝ i � ∇IiðxÞ ¼ κIbðxÞ�κIiðxÞ ð2Þ
The resulting DOM RTE is a first order partial differential
equation and depends on spatial coordinates only. Each
ordinate ŝ i has a directional quadrature weight wi such
that a directional integral is converted into a sum over
quadratures. In particular,Z

dΩ¼
X
i

wi ¼ 4π ð3Þ

Z
IdΩ¼

X
i

Iiwi ¼ G ð4Þ

where G is the incident radiation.

2.2. Finite volume discretization

Eq. (2) may be solved numerically by Finite Volume
Methods, i.e., Eq. (2) is integrated over a cell volume before
the Gaussian theorem is used to convert differential
operations into algebraic operations. For example, consider
a cell C with a volume Vc enclosed by nf faces (Fig. 1). The
RTE is integrated over this cell according toZ
Vc

ŝ i �∇IiðxÞdV ¼
Z
Vc

κIbðxÞdV�
Z
Vc

κIiðxÞdV : ð5Þ

For the right-hand side, the cell-center values of radiative
intensity (Iic) and properties (κc) are defined such thatZ
Vc

κIbðxÞdV�
Z
Vc

κIiðxÞdV ¼ VcκcðIbc� IicÞ ð6Þ
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