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a b s t r a c t

Numerical solution methods for electromagnetic scattering by non-spherical particles
comprise a variety of different techniques, which can be traced back to different
assumptions and solution strategies applied to the macroscopic Maxwell equations. One
can distinguish between time- and frequency-domain methods; further, one can divide
numerical techniques into finite-difference methods (which are based on approximating
the differential operators), separation-of-variables methods (which are based on
expanding the solution in a complete set of functions, thus approximating the fields), and
volume integral-equation methods (which are usually solved by discretisation of the
target volume and invoking the long-wave approximation in each volume cell). While
existing reviews of the topic often tend to have a target audience of program developers
and expert users, this tutorial review is intended to accommodate the needs of practi-
tioners as well as novices to the field. The required conciseness is achieved by limiting the
presentation to a selection of illustrative methods, and by omitting many technical details
that are not essential at a first exposure to the subject. On the other hand, the theoretical
basis of numerical methods is explained with little compromises in mathematical rigour;
the rationale is that a good grasp of numerical light scattering methods is best achieved by
understanding their foundation in Maxwell's theory.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Electromagnetic scattering by particles is described by
Maxwell's theory of electromagnetism. For spherical par-
ticles the scattering problem has been solved over a cen-
tury ago; this is commonly known as the Lorenz–Mie
theory [1]. However, particles in nature often have non-
spherical shapes. The optical properties of nonspherical
particles usually differ considerably from spherical parti-
cles of comparable sizes and chemical composition. For
non-spherical particles the electromagnetic scattering
problem can only be solved by numerical techniques. The
use of such techniques generally places much higher
demands on the user than the use of Lorenz–Mie pro-
grams. This may have contributed to an overuse of sphe-
rical model particles far beyond their narrow range of
applicability. This review aims at providing an introduction
to the required background knowledge on numerical
methods for scattering by nonspherical particles.

Numerical methods for solving Maxwell's equations
find numerous applications in physics and engineering,
e.g. in atmospheric optics, ocean optics, remote sensing,
astronomy, biomedical optics, nano- and near-field optics,
process engineering, and combustion diagnostics. Open-
source computer codes based on various numerical
methods are freely available for general download on the
internet [2]. Quite many codes are deceptively easy to use,
which could mislead the user into thinking that numerical
light scattering codes can be deployed as black-box tools
that require little understanding of numerical methods. On
the other hand, available reviews and monographs on
methods for solving Maxwell's equations are often written
for seasoned users. As a consequence, they tend to cover a
lot more breadth and depth than practitioners and new-
comers need to acquire at their first exposure to the
subject.

It is the aim of this paper to fill a gap in the existing
literature by providing a brief introduction to numerical
solvers of Maxwell's equations that will be tailored to the
needs of novices, students, and practitioners who mainly
want to become competent users and learn the main
features of numerical light scattering methods, but who do
not require to fathom all the technical details of numerical
methods. Thus this paper mainly pursues pedagogical
aims. However, it is not intended to achieve these aims by
lowering the standards of mathematical rigour; the central
theme is the development of numerical methods from first
principles. Instead, the review will maintain a tight focus
on a selected number of key methods. The selection is, on
one hand, motivated by the pedagogical need of illustrat-
ing different key ideas for solving Maxwell's equations.

Thus, only one method has been selected to illustrate
volume integral equation methods, only one finite differ-
ence method, etc. On the other hand, the selection is also
guided by the popularity of different numerical methods.

Fig. 1 shows the relative frequency of numerical
methods presented at the Electromagnetic and Light
Scattering conference series during 1998–2014. The sta-
tistics clearly shows that T-matrix methods and the dis-
crete dipole approximation (DDA) tend to be dominant in
the electromagnetic scattering community. However, there
is no trend indicating that these two methods are entirely
displacing other methods. Quite on the contrary, there are
continuing efforts to use, develop, and invent alternative
methods, each with their own advantages and niches.
Among those other methods that will be omitted in the
present review are, e.g., the finite element and boundary
element method, the method of lines, the method of
moments, Fredholm integral equation methods, or the
multiple multipole method.

In this review the finite-difference time domain (FDTD)
method will be presented as a typical exponent of finite-
difference methods. This method also has a great peda-
gogical value, since it is the most direct method for solving
the macroscopic Maxwell equations. The DDA will serve to
illustrate volume integral equation methods. The separa-
tion of variables method (SVM) will be presented here as a
general approach that forms the basis for other approa-
ches, such as the point-matching method and the T-matrix
approach. Waterman's extended boundary condition
method will be employed to illustrate T-matrix methods.
Before proceeding to a discussion of these numerical
methods in Section 3, a brief review of Maxwell's equa-
tions, boundary conditions, and constitutive relations is

III V VI VII VIII IX X XII XIII XIV
0

0.2

0.4

0.6

0.8

1

Frequency of numerical methods in ELS presentations

DDA
FDTD
SVM
other

Fig. 1. Relative frequency of numerical methods in papers presented at
ELS conferences during 1998–2014. (Data for the fourth and eleventh ELS
conference were not available.).
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