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a b s t r a c t

A general elementary linear system containing two inputs and two outputs is defined, and
the behavior of a composite system consisting of a number of elementary systems con-
nected in series is reviewed. In particular, the four proportionality coefficients relating the
outputs of the composite system to its inputs have the same formal mathematical
structure, independent of the number of elementary systems that are connected together.
This composite linear system is then used to model scattering of an electromagnetic plane
wave by a singly-coated sphere or a multi-layer sphere. Mirroring the behavior of a
general linear system, the partial wave scattering amplitudes and their Debye series
representation also have the same formal mathematical structure, independent of the
number of layers of the sphere. Lastly, the interpretation of coherent multiple-scattering
inside a multi-layer sphere in the frequency-domain is commented on.
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1. Introduction

For many years, scattering of an electromagnetic plane
wave or a transversely focused electromagnetic beam by a
coated sphere or a multi-layer sphere has been a problem
of both theoretical and experimental interest. The solution
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to the coated sphere scattering problem was first obtained
by Aden and Kerker [1], and has since been cast in more
streamlined forms [2–5]. Similarly, much progress has
been made in developing numerically stable algorithms for
computing the quantities of interest for coated sphere
scattering [6,7]. The theory of scattering by a multi-layer
sphere was developed in [8–14], increasingly stable algo-
rithms for numerical computations were developed in [8–
10,15–17], and the extension to scattering by a focused
beam was pursued in [18]. In addition, the partial wave
scattering and interior amplitudes of a coated sphere
[5,19] and a multi-layer sphere [14,20,21] were expressed
in terms of the physical processes of diffraction of the
partial waves comprising the incident plane wave, external
reflection, and transmission following any number of
internal reflections. These processes for each partial wave,
when added together as an infinite series, are known as
the Debye series. Improved algorithms for computing the
various the Debye series terms for an absorbing particle
were described in [22,23].

In [5,14,21] a number of recurring mathematical pat-
terns were observed for coated sphere and multi-layer
sphere scattering in both the partial wave scattering
amplitudes and the expressions leading to them. A num-
ber of these patterns had previously been encountered by
other researchers [4,8,13,24,25]. It was observed that the
expressions were formally mathematically identical at
every level of assembly of a multi-layer sphere, thus pro-
viding an effective iterative approach for computing the
partial wave scattering amplitudes. The recurring patterns
also imply the action of some basic property or funda-
mental symmetry of the system that has not been expli-
citly commented on in the past. The purpose of this
tutorial is to clarify the origins of these patterns so as to
understand coated-sphere and multi-layer sphere scatter-
ing from a more general overarching and fundamental
point of view.

The observed patterns, instead of resulting from
dynamics particular to electromagnetic scattering, are
purely mathematical consequence of the behavior of a
general composite linear system. These patterns occur for
a large variety of composite systems, requiring only that
the quantities under consideration behave linearly, and the
elementary constituents that comprise the composite
system are connected to each other in series. Electro-
magnetic scattering by a stratified object satisfies these
general requirements since the scalar radiation potential
from which the electric and magnetic fields are derived is
the solution of a linear differential equation [2,26,27], and
the concentric stacking of the different spherical layers
satisfies the series connection criterion. The patterns
observed here also occur for an incident plane wave pro-
pagating through a stack of plane-parallel thin films
[28,29]. This leads to the transfer matrix formalism for
computing thin film transmission and reflection [30]. They
also occur in the adding-doubling method for radiative
transfer through a plane-parallel atmosphere [31–33].

The body of this tutorial proceeds as follows. In order to
define the notation and set the stage for the more elaborate
geometries of Sections 4,5, the partial wave scattering
amplitudes for a homogeneous sphere are given in Section 2,

and their Debye series representation is derived. As a
mathematical interlude, in Section 3 a general linear system
containing two inputs and two outputs is described, and the
details of the series connection of a number of such systems
are recounted. In Section 4 electromagnetic scattering at the
interface between two media of differing refractive indices is
modeled by an elementary linear system, and scattering by a
singly-coated sphere is modeled by the series combination
of two such systems. Finally, a multi-layer sphere is modeled
in Section 5 by an arbitrary number of elementary systems
connected together in series.

The Debye series for scattering by a singly-coated sphere in
Section 4.2 and by a multi-layer sphere in Section 5.2 is for-
mally mathematically identical to that for scattering by a
homogeneous sphere in Section 2, with the single-interface
partial wave transmission and reflection amplitudes now
being replaced by multiple-scattering transmission and
reflection amplitudes. The linear system point of view
described here provides a more straightforward and stream-
lined derivation of these results than has appeared previously
in [5,14,21], and may well be useful in analyzing scattering by
a layered object having a more complicated shape. In addition,
the form that the proportionality constants of a general
composite system assume when they are expressed in terms
of the proportionality constants of its constituents motivates
the interpretation that coherent multiple-scattering in the
frequency-domain, as expressed by the Debye series ampli-
tudes, is mathematically inevitable, rather than resulting from
dynamics specific to electromagnetic scattering.

2. Notation and scattering by a homogeneous sphere

Consider a linearly polarized plane wave in an external
medium (region 2) of refractive index m2, having the
vacuum wavelength λ, wave number k¼2π/λ, electric field
strength E0, traveling in the positive z direction and
polarized in the x direction. The time dependence of the
plane wave exp(� iωt) will be left implicit for the
remainder of this tutorial. The plane wave is incident on
and scattered by a homogeneous sphere of radius a (region
1) and refractive index m1 whose center is at the origin of
coordinates. In Lorenz-Mie theory, the scattered fields are
expressed as an infinite series of partial wave contribu-
tions. The amplitude of the transverse magnetic (TM)
scattered fields of partial wave n is standardly denoted by
an, and the amplitude of the transverse electric (TE) scat-
tered fields is denoted by bn.

There are four basic partial wave amplitudes in Lorenz-
Mie theory in terms of which all the scattering quantities
of interest can be expressed,

N12
n ¼ α ψn m2kað Þψ ‘n m1kað Þ–βψ ‘n m2kað Þψn m1kað Þ ð1aÞ

D12
n ¼ α χn m2kað Þψ ‘n m1kað Þ–β χ‘n m2kað Þψn m1kað Þ ð1bÞ

P12
n ¼ α ψn m2kað Þχ‘n m1kað Þ–β ψ ‘n m2kað Þχn m1kað Þ ð1cÞ

Q12
n ¼ α χn m2kað Þχ‘n m1kað Þ–β χ‘n m2kað Þχn m1kað Þ ð1dÞ

where α¼m1 and β¼m2 for the TE polarization, α¼m2 and
β¼m1 for the TM polarization, and where ψn is a Riccati-
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