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a b s t r a c t

We study and compare spectral properties of various volume-integral-equation for-
mulations. The equations are written for the electric flux, current, field, and potentials,
and discretized with basis functions spanning the appropriate function spaces. Each for-
mulation leads to eigenvalue distributions of different kind due to the effects of dis-
cretization procedure, namely, the choice of basis and testing functions. The discrete
spectrum of the potential formulation reproduces the theoretically predicted spectrum
almost exactly while the spectra of other formulations deviate from the ideal one. It is
shown that the potential formulation has the spectral properties desired from the pre-
conditioning perspective.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Electromagnetic scattering problems involving inho-
mogeneous objects are often solved by the volume-
integral-equation methods (VIE). The VIE method is sui-
table for complicated scattering problems due to its sim-
plicity; only Green's function of the background is
required. Moreover, the radiation condition is auto-
matically satisfied. The drawback in the VIEs is that the
discretization procedure leads to a full matrix equation in
contrast to, for example, the finite-element method where
the system is sparse. This implies that to obtain a solution
for the matrix equation is of order OðN3Þ complexity for
time and OðN2Þ for memory, where N is the number of
unknowns. For the lowest order basis, typically 10
unknowns per wavelength are needed.

High computational complexity prevents the usage of
the direct VIE solvers for large structures. Using an itera-
tive method such as the conjugate-gradient (CG) or

generalized minimal residual (GMRES) method, the solu-
tion time is reduced to OðMN2Þ where M is the number of
iterations needed to solve the system. By accelerating the
matrix–vector multiplication required in each iteration
step with, e.g., a fast multilevel multipole algorithm
(MLFMA) or fast Fourier transform (FFT) based techniques
[1–5], the computational complexity is reduced to
OðMN log NÞ for time and OðNÞ�OðN log NÞ for memory.
Hence, solution time becomes manageable if M⪡N.

For an efficient algorithm it is necessary that the
number of iterations M is much smaller than N. M depends
on the conditioning of the matrix which, in turn, depends
on materials, size, and shape of the scatterer. Unfortu-
nately, the number of iterations increases rapidly with
respect to the permittivity and size [6–9]. To understand
reasons for this, we need to study the spectrum of the
integral operator. Theoretically, the spectrum of the
volume integral operator has been studied in [10–12].
These studies show that the spectrum and the spectral
radius depend on the permittivity function. The spectral
radius, in turn, defines the conditioning of the matrix, and
consequently, the convergence of the iterative solution.
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The spectral properties of the discrete system (the
eigenvalues of the matrix) depend on the discretization
technique employed, hence, it is important to study the
effects of discretization numerically. Numerical studies,
however, have been restricted to a couple of the most
popular volume-integral-equation formulations and dis-
cretizations. The discrete-dipole-approximation (DDA)
type formulations with cubic elements were analyzed in
[10,13,14], and with rectangular elements in [15]. More-
over, the spectral properties of the electric current J-VIE
with the L2 Galerkin dicretization for tetrahedral mesh
have been studied [16]. It is worth noting that the inte-
gration of Green's tensor (IGT) formulation of the DDA is
almost equivalent to the J-VIE discretized with cubic ele-
ments and point matching. The only difference is that the
DDA maps the polarization current to the electric field and
the J-VIE maps the current to itself, hence, the matrix
elements differ by a factor of (ϵr�1).

In this paper, we compare the eigenvalue distributions
computed by four VIE formulations and their standard
discretizations. We consider the electric flux density for-
mulation (D-VIE) discretized with the SWG (Schaubert–
Wilton–Glisson) basis and testing functions [17], field
formulation (E-VIE) with the curl conforming basis and
testing functions [18,19], current formulation (J-VIE) [20]
with L2 basis and testing functions, and potential for-
mulation (P-VIE) with scalar and vector H1 basis function
and point matching [21]. We apply linear tetrahedral ele-
ments for discretizations and the results presented here
cannot be directly generalized to other element shapes
such as rectangular or curvilinear elements.

2. Formulations

Consider time-harmonic electromagnetic wave scat-
tering by an inhomogeneous dielectric object bounded by
volume V in free space. The time factor of expð� iωtÞ is
assumed and suppressed. The relative permittivity ϵrðrÞ
may be a function of position in V. The background is
homogeneous with constant ϵ0 and μ0. Let us define the
volume potential operator as

VðFÞðrÞ ¼
Z
V
Gðr; r0ÞFðr0Þ dV 0; ð1Þ

where G is Green's function of the background. By using
the volume-equivalence principle, the following repre-
sentations are obtained for the total electric E and mag-
netic H fields [22]:

E¼ Eincþ �1
iωϵ0

∇∇þk2I
� �

�V Jð Þ�∇�V Mð Þ

H ¼Hincþ �1
iωμ0

∇∇þk2I
� �

�V Mð Þþ∇� V Jð Þ ð2Þ

in which Einc and Hinc denote the incident fields with
sources outside the object. The source functions in (2) are
the equivalent electric and magnetic current densities:

JðrÞ ¼ � iωϵ0ðϵrðrÞ�1ÞEðrÞ
MðrÞ ¼ � iωμ0ðμrðrÞ�1ÞHðrÞ: ð3Þ

From now on we assume that the permeability μr ¼ 1,
hence the magnetic current M is identically zero. Based on
the representations in (2), we can derive three VIE for-
mulations. The most widely used formulation is the D-
formulation or D-VIE in which the unknown function is
the flux density D [17,23]. By representing the equivalent
current J in terms of the flux density and inserting it into
(2), the D-VIE is obtained:

ϵ0Einc ¼ ϵ
�1
r � D�ð∇∇þk2I Þ � Vðχ � DÞ: ð4Þ

Here the material parameter χ ¼ I �ϵ
�1
r .

The integral-equation can be written for the equivalent
polarization current J which is the actual source for the
scattered fields [20]. We call this formulation as the J-
formulation or J-VIE, and it reads as

J inc ¼ J�τ � ð∇∇þk2I Þ �VðJÞ; ð5Þ
where τ ¼ ϵ r� I .

To derive the electric field E-formulation (E-VIE), we
use the identity

ð∇∇þk2I Þ �VðFÞ ¼∇� ð∇�VðFÞÞ�F; ð6Þ
since it is more natural to apply the curl rather than div-
operator to the electric field. Representing the unknown in
terms of the electric field, the E-VIE can be written as
follows: [19,18]:

Einc ¼ ϵ r � E�∇� ∇�Vðτ � EÞ: ð7Þ
Finally, the integral-equation for the vector A and scalar

ϕ potentials, defined as

E¼ iωA�∇ϕ; H ¼ μ�1
0 ∇� A; ð8Þ

can be derived by applying the Lorentz gauge

iω∇ � A¼ �k2ϕ ð9Þ
in which case both potentials satisfy the Helmholtz equa-
tion. Using the volume-equivalence principle, the potential
formulation P-VIE can be written as [24]

iωAinc ¼ iωA�k2V½τ � ðiωA�∇ϕÞ�
ϕinc ¼ ϕ�S½τ � ðiωA�∇ϕÞ�

:

(
ð10Þ

in which

SðFÞðrÞ ¼
Z
S
nðr0Þ � Fðr0ÞGðr; r0Þ dS0; ð11Þ

and n0 is the outer unit normal vector of the surfaces S on
which the permittivity is discontinuous.

3. Discretizations

In this section, we consider discretizations of the D-, J-,
E-, and P-formulations. Let us divide the object with linear
tetrahedral elements, and define the basis b and the test-
ing t functions on the tetrahedral mesh. The residual error
is forced to be orthogonal to test functions with the sym-
metric L2 product:

F;Gh i ¼
Z
V
F � G dV ; ð12Þ

where V is the volume of the object.
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