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a b s t r a c t

The finite-difference time-domain (FDTD) and ray-by-ray (RBR) methods are techniques
used to calculate the optical properties of nonspherical particles for small-to-moderate
and large size parameters, respectively. The former is a rigorous method, and the latter is
an approximate geometric–physical optics-hybrid method that takes advantage of both
high efficiency of the geometric optics approach and high accuracy of the physical optics
approach. In these two methods, the far field is calculated by mapping the near field to the
far field with consideration of the phase interference. The mapping computation is more
time-consuming than the near-field simulation when multiple scattering directions are
involved, particularly in the case of the RBR implementation. To overcome the difficulty, in
this study the fast multi-pole method is applied to both FDTD and RBR towards accel-
erating the far-field calculation, without degrading the accuracy of the simulation results.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Calculating the optical properties of nonspherical
objects and particles is important in many research fields.
For example, in remote sensing, airborne objects are
detected from radar signals scattered back from the
objects [1–3]; in atmospheric sciences, the properties of
aerosols and ice particles are inferred based on radiometer,
radar, and lidar observations and these properties are
fundamental to the assessment of the radiative forcings of

the aforesaid atmospheric constituents [4–10]; and in
medical examination and treatment, the optical analysis of
tissue and red blood cells with lasers is used to detect
tissue- and blood-related diseases [11–15]. Rigorous
methods for these calculations include the finite-
difference time-domain (FDTD) method [16–21], pseudo-
spectral time-domain method (PSTD) [21–23], discrete
dipole approximation (DDA) [24–26], T-matrix method
[27–29], invariant imbedding T-matrix method (II-TM)
[30,31], to just list a few. Approximate methods include
the improved geometric optics method (IGOM) [32], ray-
by-ray method (RBR) [33], and physical-geometric optics
hybrid method (PGOH) [34,35]. Most rigorous methods are
feasible for particles with characteristic dimensions smal-
ler than 20–30 times the incident wavelength, while the
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aforesaid approximate methods generally give reasonable
approximations when the particle sizes are larger than 20–
30 times the incident wavelengths.

The FDTD solves Maxwell's equations using the second
order leap-frog (or central) finite difference scheme to
approximate the spatial and temporal derivative terms.
Therefore, this method converges to the true solution
when using a fine grid mesh along with a long temporal-
integration duration. The merits of FDTD are manifested by
its easy implementation, easy control of the degree of
accuracy via the grid resolution, and feasibility for complex
particle shapes. However, CPU time for a single orientation
calculation increases by the fourth power of the particle
size. For this reason, FDTD is generally impractical to apply
to particles larger than 20–30 wavelengths. In fact, the
rapid increase in computational time is a common short-
coming of rigorous methods.

The RBR method approximates the near field within the
geometric optics framework. Rays are traced following the
geometric optics approach. This avoids the tremendous
CPU consumption of FDTD. However, the far field is cal-
culated by mapping the electric field associated with each
ray to the far-field counterpart. Therefore, a significant
amount of CPU time is consumed to calculate the far field
when many scattering directions are of interest. The
number of rays and required CPU time increase quad-
ratically with the size parameter. Another shortcoming is
that this approximation is good only for large faceted
particles. For “soft” (i.e., the refractive index close to 1) and
weakly absorbing particles, a volume integral algorithm
gives a better far-field approximation, whereas for “hard”
(i.e., the refractive index much larger than 1) and strongly
absorbing particles, a surface integral gives a better far-
field approximation [36].

The optical properties of a particle are specified in
terms of the extinction cross-section, σe, scattering cross-
section, σs, and a 4�4 phase matrix representing the
relationship between the scattered and incident Stokes
parameters in the case of randomly oriented particles with
an equal number of mirror-imaging positions [37,38]:
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where r¼the distance between the particle and the point
of observation; λ¼the wavelength of the incident light;
Ii Q i Ui Vi
� �T and IS QS US VS

� �T denote the
Stokes parameter vectors associated with the incident and
scattered waves, respectively [37].

Note that the phase matrix depends on the scattering
direction and particle orientation, and the extinction and
scattering cross sections are affected only by particle
orientation. Averaging the cross sections and phase matrix
over all orientations results in the optical properties of an
ensemble of randomly oriented particles (e.g., most ice
cloud particles and aerosols). A derivative variable called
the extinction efficiency is commonly used to describe the
optical properties, which is defined as σe=σp, where σp is
the projected area of the particle to the incident light. σp is

also orientation-dependent and must be averaged over all
orientations for randomly oriented particles.

Using FDTD or RBR to calculate the optical properties of
nonspherical particles includes two steps [16,33]: (i)
simulating the near-field scattered electromagnetic waves
inside and around the particle by solving Maxwell's
equations within a finite domain including a particle (in
FDTD) or by tracing rays following the geometric optics
approach (in RBR), and (ii) calculating the extinction and
scattering cross-sections and far field (at infinite distance)
by mapping the near field to the far field. The phase matrix
is then obtained from the far field.

The second step, the far-field calculation, usually con-
sumes more than half of the total computational time in
FDTD, or the majority of the total CPU time in RBR.
Therefore, accelerating the far-field calculation can sig-
nificantly improve the efficiency of the two methods. The
conventional far-field calculation further consists of:
(i) calculating the far field of each near-field unit (a small
volume for volume integration mapping, or a small surface
area for surface integration mapping) independently and
(ii) computing the total far field as the superposition of all
of the unit far fields. This becomes quite time consuming
when the far-field information is required in many scat-
tering directions. To accelerate the far field calculations,
we implement the fast multi-pole method (FMM) [39–43],
which consists of: (i) separating the near-field domain into
several sub-domains and “gathering” the near field within
each sub-domain; (ii) calculating the far field of each sub-
domain independently; and (iii) calculating the total far
field as the superposition of the far-field contributions by
individual rays.

Using this algorithm, the far-field calculation of a tre-
mendously large number of the near-field units is no
longer required. Therefore, the CPU time consumption can
be significantly reduced. Since originally developed in
1987 [39], the FMM has been widely applied to various
problems in numerous research fields [44–47] including
solving Maxwell's equations, leading to a reduction of
the computational complexity of matrix-vector multi-
plications from OðN2Þ to OðNÞ. In particular, an alternative
algorithm using 2D or 3D Fourier Transforms was also
used to accelerate the far-field calculation in DDA [48], and
another scheme using the plane wave expansion is
employed in the near-to-far field transformation from the
near field obtained from a method of moments (MoM)
[49].

This study is directed towards accelerating the far-field
calculation using FMM in FDTD and RBR. Section 2
describes the methods. Section 3 shows results and
analyses, and Section 4 presents the summary and
discussions.

2. Methods

The far field can be computed with FMM in conjunction
with FDTD and RBR. As a comparison, the conventional far-
field formalism is also presented here.
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