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a b s t r a c t

A line profile model was developed that accounts for all essential underlying physical
mechanisms. The model is based on the quantum-mechanical collision integral kernel
calculated for intermolecular interaction potentials pr�n with n¼3…6 where r is the
distance between colliding molecules. It was shown that collisions of molecules with
scattering on classical small angles flatten the line profile. The relative flattening reaches
10% for n¼3 and has a smaller value, �2%, for n¼6 in conditions of inhomogeneous line
broadening. An algebraic expression for the line profile was obtained, which allows pro-
cessing recorded spectra with preliminary estimation and constraint of some of the
profile's parameters.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recently it was ascertained [1–4] that soft collisions of
molecules with scattering on classical small angles �0.1…
0.3 rad noticeably diminish Dicke line narrowing [5,6]. This
means that the spectral line profile accounting for soft col-
lisions is flatter (and close to the Voigt profile) than the line
profile in the hard collision model [7,8]. It is shown (see Ref.
[2, Fig. 2]) that the frequency of small-angle scattering col-
lisions can exceed the frequency of large-angle scattering
collisions up to 10 times for long-range (dipole–dipole and
dipole–quadrupole) intermolecular interactions and light
perturbing molecules. Hence, the account of soft collisions is
necessary for quantitative processing of the high quality
data on spectral line shapes. The speed-dependent line

profiles [1,2] derived on the basis of the quantum-
mechanical collision integral kernel [9] and the differential
cross-sections calculated for intermolecular interaction
potentials pr�n with n¼3…6 make it possible to account
for both small- and large-angle scattering collisions. Such
profiles contain only physically meaningful adjustable
parameters such as the frequencies of soft and hard colli-
sions and the parameter of the collision line narrowing.
These profiles can be used in data processing for different
pairs of colliding molecules and certain types of simplest
inverse-power interaction potentials.

The type of an intermolecular interaction potential
determines the speed-dependence of collision relaxation
constants, the relation of frequencies of small-and large-
angle scattering collisions, and the angle characteristics of
scattering. The actual interaction potentials are more
complex than the inverse-power ones because of their
combined type, the presence of a repulsive part (potential
well), and their dependence on mutual orientation of
colliding molecules. It can be expected that proper mod-
eling and parameterization of the collision integral kernel
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[9] will provide a more flexible and simple line profile
appropriate for processing experimental line shapes. Such
model profile must include all essential physical mechan-
isms of its forming: (1) the Doppler and the collision line
broadening, (2) Dicke line narrowing reduced by the effect
of small-angle scattering collisions, (3) wind effect leading
to the speed-dependence of collision relaxation constants,
(4) line mixing. As a result of the modeling, parameters
additional to those presented in common profiles appear.
Namely, the full set of parameters for a separate spectral
line is the line intensity S, the line center Ω0, the output
frequency of the collision integral ν, the input frequencies
of soft and hard collisions νs and νh, respectively, the
parameter η defining the speed-dependence of the above
frequencies, the mean angle θ of scattering absorbing
molecules on small angles, and the parameter ξ related to
the asymmetry of the collision integral kernel caused by
the wind effect (speed-dependence). In the case of inter-
fering lines, the complementary cross-relaxation para-
meters ξm are introduced which describe the line mixing
effect form-th line. In general, the parameters ν, νs, νh, and
ξm are complex, and thus they describe the line shifting
and asymmetry as well as the line broadening [10,11].

The abundance of adjustable parameters allows one to
explore the effect of various physical mechanisms
accounted for the line profile by means of variation of the
parameters and comparison of the corresponding calcu-
lated profiles. On the other hand, a lot of parameters make
it difficult to fit the profile, because some of the para-
meters may strongly correlate.

The aim of this paper is to create such a line profile
model, investigate an influence of soft collisions on its
shape, and give the recommendations for its usage in
spectral analysis.

2. Model collision integral kernel

The master equation for the normalized constant part
of the light-induced molecular polarization R [1,2] in the
1D-velocity approach (see Ref. [12] and references therein)
reads
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where the collision integral is represented as a sum of the
hard-collision part proportional to the frequency νh and
the small-angle scattering part with the frequency νs. Here
the speed-dependence is taken in a most simple quadratic
form, the same for all the collision relaxation constants ν,
νh, and νs [10,12], which are the quantities averaged over
one-dimensional velocity. This form of the speed-
dependence allows expressing the solution of Eq. (1)
through the roots of a quadratic equation. More realistic
approximation of the speed-dependence [12] leads to the
analytical line profile expressed via the roots of a cubic

equation. The kernel A(t, t1) describes the action of soft
collisions with the scattering on classical small angles. The
diffraction–scattering part of the kernel is in order of
magnitude more narrow than A(t, t1) and thus it works as
the δ-function which leads to renormalization ν -ν�νd,
where νd is the frequency of collisions with scattering on
diffraction angles [1–3]. Ω in Eq. (1) is the frequency
detuning, kv is the Doppler line half-width at the 1/e
height, k is the wave number at the given transition, vz is
the component of a molecular velocity parallel to the wave
vector, S is the line intensity, kB is the Boltzmann constant,
T is the gas temperature, andm is the mass of an absorbing
molecule.

On the basis of calculations performed for dispersion
intermolecular interaction potential (see Fig. 2b in Ref. [1]),
the following model kernel normalized by its square was
chosen:
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Here θ is the ratio of mean velocity changes at classical

small-angle scattering to the most probable thermal
velocity v and Θ(t) is the unit step function. It should be
noted that the use of the function A(t, t1)p1/{exp[�c1(t)
t1]þexp[c2(t)t1]} with a smooth top gave worse results of
its fitting to kernels calculated in Refs. [1,2].

Parameters a1, a2, and θ. were obtained from fitting the
model

Atot t; t1ð Þ ¼ a A t; t1ð Þþb exp � tþt1ð Þ2
h i

ð3Þ

to the quantum-mechanical kernels calculated in Refs.
[1,2] for intermolecular potentials pr�n. This fit simul-
taneously included multiple kernels with n¼3…6 and
β¼0…10, where β�mb/m is the perturbing to absorbing
molecular mass ratio. The second term in the right-hand
part of Eq. (3) represents hard collisions where the coef-
ficients a and b retrieved from the fitting determine the
ratio r� νs/νh¼a/(π1/2b). The examples of the fitting are
presented in Fig. 1. As is seen from the comparison of the
squares under curve 2 and among curves 1 and 2, in the
case of the dipole–dipole intermolecular interaction the
scattering on classical small angles dominates the scat-
tering attributed to hard collisions (Fig. 1a and b), while
these types of scattering (“soft” and “hard”) are compar-
able for the shot-range Van der Waals interaction with
n¼6 (Fig. 1c and d).

The determined parameters a1 and a2 satisfy the con-
ditions: a1|t|{1 and a2θ2|t|{1 at |t|o3. This allows
expansion of the exponents in Eq. (2) up to the second
order of magnitude for a1 and a2. The value of the kernel at
the 1/e maximum gives A(t, t1)EA(|t1|)� θ. Since
θ�0.15…0.3o1, the function R(tþt1) under the integral in
Eq. (1) can also be expanded in the powers of t1:
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