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a b s t r a c t

After a ray bundle passes a curved surface, the equal-phase wavefront associated with the
refracted rays will be distorted. Consequently, the cross-section of a ray bundle with a curved
wavefront during propagation in a homogeneous medium will vary with the ray-bundle
propagation distance. Moreover, the phase of a ray bundle with convergent wavefront will
undergo a phase shift of π/2 with each passage of a focal line. The contribution to the scat-
tering amplitude by a ray bundle after passing a scatterer is determined by three elements:
the cross-section variation of its wavefront, the total phase, and the refraction coefficients
determined by Fresnel equations. In the geometric optics regime, the aforesaid three ele-
ments caused by a curved surface can be systematically quantified in terms of the vectorial
complex ray-tracing technique. In this study, rigorous vectorial complex ray-tracing calcula-
tions are conducted for light scattering by a general spheroid and the results are validated in
comparison with the benchmarks provided by the rigorous T-matrix method.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The single-scattering properties of homogeneous
spheres or multiple spherical shells for given sizes can be
analytically obtained by the Lorenz–Mie theory [1,2]. Light
scattering by small-sized arbitrary scatterers can be mod-
eled by numerically accurate methods including the dis-
crete dipole approximation method (DDA) [3–5], finite dif-
ference time domain method (FDTD) [6–8], and pseudo-
spectral time domain method (PSTD) [9–11]. For small-to-
moderate scatterers with rotational symmetry, two effec-
tive realizations of the T-matrix method, namely, the
extended boundary condition method (EBCM) [12–14] and
invariant-imbedding T-matrix method (IITM) [15,16], can

facilitate the single-scattering property computations much
more accurately and effectively than numerical methods,
particularly in the case of randomly oriented particles. For a
scatterer with its characteristic dimension much larger than
the incident wavelength, the geometric optics method can
provide a reasonably accurate approximation [17–19]. In
some geometric optics methods, the physical-optics effect,
such as accurately mapping the near-field to far-field (e.g.
[18]), surface waves (e.g. [20]), tunneling rays (e.g. [21]),
and, caustics (e.g. [22]), has been taken into consideration.

For a scatterer with a curved surface, the wavefront of a
refracted wave is distorted. Compared to the conventional
geometric optics method, a divergence factor must be
introduced to represent the effect caused by wavefront
distortion [1,20,23–25]. Consequently, the variations in the
phase and cross-section of a ray bundle will give rise to
additional complexity in comparison with ray tracing in
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the case of a scatterer with facet faces [1,26]. The effect
caused by wavefront distortion has been theoretically and
experimentally studied using the vectorial complex ray
model in 2D propagation where the incident and refracted
rays remain in the same plane [25,27–29]. In this study,
the vectorial complex ray-tracing technique [22] including
the wavefront distortion effect is implemented for the 3D
case for a general spheroid; however, the present study is
still restricted to the pure geometric optics method.

The present study focuses on the scattering phase matrix,
which includes all the scattering information and can be
obtained from the amplitude scattering matrix [1,2,14]. The
amplitude scattering matrix S defined with respect to the
scattering plane spanned by the incident and scattered
directions shown in Fig. 1 is given in the form [1,2]:
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where r is the distance from the origin to the point of
observation; The quantities E J and E? are the parallel and
perpendicular components of the electric field, decomposed
with respect to the scattering plane. The superscripts “inc”
and “sca” denote the incident and scattered quantities.

2. Method

2.1. Scattering amplitude

Consider a scatterer of refractive index m illuminated
by a plane wave with wavelength λ; and assume a ray

bundle with a plane wavefront to impinge on the surface
of the scatterer with a solid angle element dΩint, which is
defined in terms of the area of the image of a Gauss map of
the corresponding incident area. Consequently, a scattered
ray bundle will spread into a solid angle dΩsca, which is
defined as the area of the image of a Gauss map of the
corresponding wavefront [30]. The intensity of the scat-
tered light can be formulated as [1]:

IS ¼ Tf I0
cos θi;1dΩint=K int
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where I0 and IS are respectively the incident and scattered
intensities; K int and Ksca are the Gaussian curvatures of
the surface of the scatterer at the incident point and the
wavefront of the scattered light, respectively; θi;1 is the
initial incident angle. The transmission coefficients Tf are
related to the Fresnel equations and incident and refracted
angles by
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where the subscript p is the order of the emergent ray
(Fig. 2), rn and tn are respectively the Fresnel reflection and
refraction coefficients at the nth interaction of the ray with
the particle surface. θi;n and θt;n are the incident angle
and the refracted angle of the nth interaction of the ray
with the particle surface. In the far field, the scattering
wave is spherical, Ksca ¼ 1=r2, and the scattering matrix for
a ray bundle can be formulated in the form:

S¼
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p ¼ 0
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ffiffiffiffiffiffi
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where ζp is the phase of the scattered wave, which con-
sists of the phase shift due to the length of optical path
relative to the reference ray, the dot-dashed line in Fig. 2,
and the phase shift due to the focal points/lines [1]; Up is a
coefficient matrix, which is related to the Fresnel coeffi-
cients and the corresponding rotation matrices. G is a
rotation matrix related to the incident frame of reference
and the scattering plane defined by [31]:
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where the êX and êY represent the unit vectors along X-
axis and Y-axis directions in the incident frame of refer-
ence and, êintJ and êint? the unit vectors parallel and per-
pendicular to the scattering plane, as shown in Fig. 1. The
divergence factor is defined by [1,25]:

Dp ¼
cos θt;pþ1 cos θt;1
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where Ki;n and Kt;n are respectively the corresponding
Gaussian curvature of the wavefront of the incident and
refracted rays at the nth interaction of the ray with the
particle surface. The total scattering matrix associated with

Fig. 1. Scattering plane spanned by the incident and scattered directions,
i.e., ê inc and êsca , in the incident frame of reference, where the incident
direction is along the z-axis. θ and ϕ are the zenith and azimuthal angles
in the incident frame of reference. The subscripts J and ? are the cor-
responding parallel and perpendicular components with respect to the
scattering plane, respectively.
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