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a b s t r a c t

The 2D radiative transfer equation coupled with specular reflection boundary conditions
is solved using finite element schemes. Both Discontinuous Galerkin and Streamline-
Upwind Petrov–Galerkin variational formulations are fully developed. These two schemes
are validated step-by-step for all involved operators (transport, scattering, reflection)
using analytical formulations. Numerical comparisons of the two schemes, in terms of
convergence rate, reveal that the quadratic SUPG scheme proves efficient for solving such
problems. This comparison constitutes the main issue of the paper. Moreover, the solution
process is accelerated using block SOR-type iterative methods, for which the determina-
tion of the optimal parameter is found in a very cheap way.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal radiation is a heat transfer mode important to
take into account in many practical high temperature
engineering applications such as, in modelling industrial
furnaces, combustion chambers, or forming processes, to
cite but a few [1,2]. The forward model commonly used to
model the propagation of thermal radiation within semi-
transparent participating media is the so-called radiative
transfer equation (RTE). This equation is integro-differ-
ential, so that its solution is far from being given
straightforwardly, especially when the geometry of the
bounded domain cannot be considered as mono-
dimensional. In such cases, the use of numerical and
physical approximation methods is mandatory to access
the solution of the RTE.

In the field of numerical methods, for the solution of
radiative transfer problems in participating media, the
finite volume method (FVM) for the space discretization,
coupled with the discrete ordinated method (DOM) or
other methods, are among the most widely used. Indeed,
they can provide good accuracy in a wide range of practical
problems with moderate computational requirements [3–
6]. The review paper [7] lists recent advances in such
numerical methods for the solution of the RTE with FVM.

Other methods that have been used to solve the RTE
include, the zonal method [8], natural element and meshless
methods [9,10], or the finite difference method [11].

Besides above cited methods, the finite element
method (FEM) has a growing attention mainly because it is
based on the variational formulation, thus allowing theo-
retical studies such as existence, uniqueness and stability
of the solution. Also, very complex geometries can be dealt
with, and FEM can be versatile as soon as the variational
formulation is written down in a general framework. For
instance, using appropriate finite element libraries such as
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those in [12], for a given variational formulation, the the-
oretical development of the code with quadratic Lagrange
functions is not more expensive than with linear Lagrange
functions. In the same spirit, the change of boundary
condition location or sources can be performed in a very
straightforward way, as well as the modification of phy-
sical properties and so on, because, basically, one of the
main effort resides in writing down the variational for-
mulation in a general framework. This has been used many
times in the last decade for the RTE, for instance in [13–
15].

The RTE being an equation in which the advection
operator plays a central role, it might sometimes be
inappropriate to employ ordinary FEM due to the presence
of oscillations, especially when the albedo gets high. In
order to cope up with such a difficulty, decentered
schemes such as the Least-Squares (LS) or Streamline
Upwind Petrov–Galerkin (SUPG) allows to drastically avoid
oscillations, but at the price of adding artificial numerical
diffusion. Recently, the LS-FEM and related SUPG schemes
have been used in [16–21] mostly in view of optical
tomography applications. Note that in most of these
papers the free output boundary condition was con-
sidered, not the one allowing reflections. Also, another
difficulty arising with pure LS-FEM is that the number of
terms in the variational formulation can become very high,
especially when considering the specular boundary con-
dition as it is the case in this study. That is the reason why
the SUPG scheme, which is a purely decentered finite
element scheme is the subject of this study.

Another possibility for the solution of the RTE based on
variational formulations is to use a Discontinuous Galerkin
(DG) formulation. The DG method, firstly developed in the
field of neutron transport [22], has then been used for
solving the transport problem of radiation [23–28]. This
method is very attractive because it has all the advantages

of the FEM and, moreover, it is also elementwise con-
servative, such as the FVM.

Based on the above-cited methods, several extensions
have been developed for instance the Multi-Scale Finite
Element Method [29] with mesh adaptation or the use of
vector radiative transfer equation to adjust atmosphere
and surface properties [30].

As far as we are concerned, the numerical develop-
ments are performed in view of radiative characterization
of multi-dimensional materials such as open-cell foams for
instance [31]. Such characterization relies on solving an
inverse problem that demands numerous iterations of
“forward” model while changing the physical properties.
As a consequence, the numerical tools must lead to a
simulation that is (i) accurate in the sense that the
approximated numerical solution must be close enough to
the solution of the continuous problem, (ii) robust in the
sense that the solution is of equal quality in various
situations (physical properties, boundary conditions, etc.),
and (iii) effective in the sense that the solution is robust
and accurate in a reasonable CPU time.

The physical model of concern is now precised. At a
given temperature, the RTE problem consists in searching
the radiance Lðx; sÞ in a medium D such that:

s �∇þκþσsð ÞLðx; sÞ�σs

I
Sn�1

Lðx; s0ÞΦðs; s0Þ ds0 ¼ κLb

8sASn�1 ð1Þ
where sASn�1 is the direction of propagation of L at the
location x (Sn�1 is the unit circle in 2D), κ and σs are the
homogeneized absorption and scattering coefficients,
respectively, and Φ s; s0ð Þ is the scattering phase function.
The spectral dependance of physical properties (and thus
of the radiance) is omitted for clarity considerations.

In applications considered here, the medium is illumi-
nated with a collimated beam (i.e. with s¼ sin and s � no0

Nomenclature

β extinction coefficient
κ absorption coefficient
Φ scattering phase function
ρ reflectivity coefficient
σs scattering coefficient
~ni complex refraction index
~L incoming radiance
G fluence
L radiance intensity
Lb emitting radiance of blackbody

Angle and space

n outward unit normal vector of a boundary
s direction
ωi quadrature weight
x space coordinates
δ, γ proportion of solid angle
Δθ angle between two nearby discrete directions

Ci cell i
D space of medium
Ω solid angle
∂D� part of boundary of medium
Sn�1 unit circle
h maximal size of triangles of a mesh
Nd number of discrete directions
Ne number of mesh elements
r relaxation parameter
v test function

Subscripts and superscripts

þ boundary for outgoing radiance
� boundary for incoming radiance
inc incident direction
in input radiance
out output radiance
ς permutation function
m, j, k discrete direction of radiation
N number of the iterations
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