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a b s t r a c t

In the single-scattering theory of electromagnetic radiation, the fractal regime is a definite
range in the photon momentum-transfer q, which is characterized by the scaling-law
behavior of the structure factor: SðqÞp1=qdf . This allows a straightforward estimation of
the fractal dimension df of aggregates in Small-Angle X-ray Scattering (SAXS) experiments.
However, this behavior is not commonly studied in optical scattering experiments because
of the lack of information on its domain of validity. In the present work, we propose a
definition of the multiple-scattering structure factor, which naturally generalizes the
single-scattering function S(q). We show that the mean-field theory of electromagnetic
scattering provides an explicit condition to interpret the significance of multiple scatter-
ing. In this paper, we investigate and discuss electromagnetic scattering by three classes of
fractal aggregates. The results obtained from the TMatrix method show that the fractal
scaling range is divided into two domains: (1) a genuine fractal regime, which is robust;
(2) a possible anomalous scaling regime, SðqÞp1=qδ, with exponent δ independent of df,
and related to the way the scattering mechanism uses the local morphology of the scat-
terer. The recognition, and an analysis, of the latter domain is of importance because it
may result in significant reduction of the fractal regime, and brings into question the
proper mechanism in the build-up of multiple-scattering.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The investigation of the optical response of disordered
matter is an intricate problem. The most common tools to
extract information from the scattering data are the trial-
and-error methods. However, due to a large number of
relevant parameters, the results are tedious to obtain and
may prove to be ambiguous. For this reason, direct meth-
ods allowing computation of system parameters from the
scattering data are highly desirable.

In the single-scattering case, a few direct methods are
known. For example, the fractal dimension of a finite

aggregate of particles is given by a special scaling law of
the structure factor, S(q), in the fractal regime [1]:

SðqÞpðqaÞ�df : ð1Þ
Here, q¼ jqj is the magnitude of the momentum transfer, a
is the typical microscopic particle size, and df is the fractal
dimension of the aggregate. This fractal scaling law is valid
in the range 1=Rgoqo1=a, where Rg is the mean radius of
gyration. The above relation in q-space reflects the corre-
sponding scaling law of the pair-correlation function, g(r),
in real space [1]:

gðrÞprdf �3; ð2Þ
valid in the range aoroRg .

From the introduction of X-ray generators a century ago
[2] to the present synchrotron facilities [3], the structure
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factor has turned out to be a major tool to characterize cor-
relations between the particle positions over many length
scales [4]. The relation (1) is widely used in small-angle X-ray
scattering (SAXS) [2] to study the morphology of fractal
aggregates [5] or fractal surfaces [6]. We can also obtain the
specific surface of the system from the Porod regime [7], and
the mean gyration radius from the Guinier regime [8].

On the other hand, most light-scattering experiments
involve multiple-scattering processes, which are intract-
able using simple mathematical tools. However, previous
studies have shown that Eq. (1) may remain valid for
scattering measurements even though multiple-scattering
events are suspected to be present [9,10]. Experimentalists
widely use the above single-scattering scaling law for the
characterization of various fractal aggregates [11], though
they also claim that minor differences exist between the
experimental data and the transmission electron micro-
scopy (TEM) analysis of the fractal dimension. Other
results suggest that Eq. (1) might not be valid when
multiple-scattering is present. A theoretical argument due
to Berry and Percival [12] claims that the scaling relation in
Eq. (1) should fail for aggregates with mass-fractal
dimension df 42. However, it is not clear what relation
should replace Eq. (1) in that case. Results of numerical
computations [13,14] suggest that Eq. (1) is valid for the
case of df 42, but with an effective exponent different
from the fractal dimension.

In this paper, we present detailed theoretical and
numerical results to clarify this important issue. The paper
is organized as follows. In Section 2, we introduce the
static structure factor with multiple-scattering condition.
Section 3 describes the mean-field multiple-scattering
theory for the dipolar and multipolar regimes. In Section 4,
we compare theoretical and numerical results for three
different types of cluster aggregates. In Section 5, we dis-
cuss the scaling behavior of the structure factor. Finally, we
conclude with a summary in Section 6.

2. General definition of the static structure factor

Consider a monochromatic electromagnetic wave of
amplitude E0 and wavelength λ, illuminating an aggregate
of N spherical particles of radius a. We assume elastic
light-scattering, with the wave-vector kinc (of modulus
k¼ 2π=λ) defining the propagation direction of the inci-
dent beam. The scattered wave-vector, ksca (with the same
modulus k), defines the observation direction. For the
general case of a randomly-oriented aggregate, the inten-
sity INðqÞ of the scattered wave depends on qa, where q is
the magnitude of the scattering vector q¼ kinc�ksca.

Assuming separation of the optical properties and the
spatial distribution of the particles, INðqÞ is related to the
structure factor SNðqÞ as

INðqÞ ¼ jE0j2f ðNÞFðqÞSNðqÞ; ð3Þ

the form factor FðqÞ being the intensity scattered by a
single particle.

We make the following observations:

(1) The structure factor SNðqÞ is a positive function which
can be conveniently normalized such that SNð0Þ ¼ 1.
This function contains information about the spatial
distribution of the particles. For the case of a single
particle (i.e., N¼1), S1ðqÞ ¼ 1.

(2) The scaling factor f(N) is related to the forward-
scattering scaling as

f Nð Þ ¼ INð0Þ
jE0j2Fð0Þ

: ð4Þ

In most cases, this function behaves as a power-law:
f ðNÞpNα, with an exponent 0oαr2 [5].

The simplest way to define the structure factor is then
via the normalized ratio of the scattered intensity from the
N particles (IN) and the scattered intensity from a single
particle (I1):

SN qð Þ ¼ INðqÞ
INð0Þ

� I1ð0Þ
I1ðqÞ

: ð5Þ

Now, IN being written as the product of a function of the
optical parameters and a function involving the spatial
distribution of the particles, the definition (5) results in a
quantity which depends essentially on the mass distribu-
tion of the aggregate.

The Rayleigh–Debye–Gans (RDG) theory provides a
framework in which the separation between the optical
and geometrical properties is realized [15]. Indeed, the
RDG theory tells us that the single-scattering of the
incoming wave by a collection of N electromagnetic
dipoles is the dominant process due to the weak electric
polarizability of the particles inside the aggregate. The
structure factor in Eq. (5) is then written as the square
modulus of the Fourier transform of the density distribu-
tion of the scattering system [4]:

SN qð Þ ¼ 1
N

XN
j ¼ 1

eiq�rj

������
������
2

ð6Þ

SN qð Þ ¼ 1
N

1þρ
Z

ðgðrÞ�1Þeiq�r dr
� �

: ð7Þ

In Eq. (6), rj denotes the position of the jth particle in the
aggregate. In Eq. (7), gðrÞ is the pair-correlation function
[1], and ρ¼N=V is the particle number density in a given
volume V.

For a fractal scatterer of radius of gyration Rg, which is
an aggregate of spherical particles of radius a, the main
features of the RDG structure factor are as follows:

(1) qaoa=Rg is the Guinier regime [8], which depends
only on the parameter qRg.

(2) a=Rgoqao1 is the fractal regime, which is character-
ized by Eq. (1). We focus on this regime in the next
section.

(3) 1⪡qa is the Porod regime [7], which is not relevant for
the present paper.
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