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a b s t r a c t

Methods to model snow aggregate scattering properties at microwave frequencies can be
divided into structurally explicit and implicit techniques. Explicit techniques, such as the
discrete dipole approximation (DDA), determine scattering and backscatter cross-sections
assuming full knowledge of a given snow particle’s structure. Such calculations are
computationally expensive. Implicit techniques, such as using the T-matrix method
(TMM) with optically soft spheroids, model equivalent particles with variable mass, bulk
density and aspect ratio according to an effective-medium approximation. It is highly
desirable that there should be a good agreement between modeled aggregate cross-
sections using both methods.

A Voronoi bounding-neighbor algorithm is presented in this study to determine the
bulk equivalent density of complex three-dimensional snow aggregates. While mass and
aspect ratio are easily parameterized quantities, attempts to parameterize the bulk density
of snowflakes have usually relied on a bounding ellipsoid, which can be determined from
a flake’s radius of gyration, root mean square mean or simply from its maximum diameter.
We compared the Voronoi algorithm against existing bounding spheroid approaches and
mass–effective density relations at ten frequencies from 10.65 to 183.31 GHz, using a set of
1005 aggregates with maximum dimensions from a few hundred microns to several
centimeters.

When using the Voronoi-determined effective density, the asymmetry parameter,
scattering, and backscatter cross-sections determined using the TMM reasonably match
those for DDA-computed snow aggregates. From Ku to W-band, soft spheroids can
reproduce cross-sections for aggregates up to 9 mm in maximum dimension. Volume-
integrated cross-sections always agree to within 25% of DDA. As the DDA is computa-
tionally expensive, this offers a fast alternative that efficiently evaluates scattering prop-
erties at microwave frequencies.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate modeling of how ice crystals scatter radiation
in clouds is a fundamental concern for meteorological
remote sensing by microwave radars and radiometers.
In order to correctly interpret the overall scattering sig-
nal, it becomes necessary to computationally model
large samples of algorithmically generated ice particles.
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These particles are structurally constrained using various
models in the hope that the collective set properly repre-
sents reality in a substantial portion of clouds [1].

A substantial portion of in-cloud water exists in a solid
state. Ice hydrometeors exhibit a wide variation in possible
shapes, and each shape scatters light differently. The
scattering signal for each ice particle can be determined
using two general types of solution to the electromagnetic
field equations. The first is to use a structurally-direct
solution such as the discrete dipole approximation (DDA)
[2,3], the finite-difference time-domain (FDTD) method
[4,5] and the Rayleigh–Gans approximation [6,7]. In the
DDA, the ice structure is discretized onto a fixed, regular
and orthonormal lattice of polarizable dipole elements
(dipoles) [8]. The DDA can resolve changes in overall
scattering behavior caused by small variations in internal
and surface structure. Based on convergence constraints,
however, snowflakes must be modeled at resolutions of at
least 10-100 microns at microwave frequencies, and fine
structural features should be resolvable [9–11]. Processing
time and memory requirements increase exponentially for
finer resolutions, larger particles and higher frequencies
[12]. Assuming fully random particle orientations, DDA
calculations must be repeated over many possible orien-
tations of a particle relative to the incident radiation to
determine scattering properties [13,14]. Furthermore, a
large number of representative particles must be con-
sidered that ideally have modeled structures which are
similar to those found in nature [2,15]. This overall is quite
computationally expensive.

As ice aggregates are quite porous, it is also possible to
use the Rayleigh–Gans approximation [6,7] to determine
backscatter. The Rayleigh–Gans formulation has been
applied to both spheroidal [7,13,16] and aggregate [17,18]
shapes. As with the DDA, aggregate structure can be dis-
cretized onto a lattice. Calculations are much faster than
with the DDA because interdipole interactions are
neglected. However, the accuracy of the results depends
on the aggregate shape model [18,19].

The other class of methods use techniques that indir-
ectly use structural information. For example, Mie theory
provides an exact scattering solution for spherical particles
[20]. Similar approaches include the T-matrix method,
which uses an extended boundary technique to handle
nonspherical morphologies [9,21–23].

In the T-matrix method, a more realistic ice particle is
commonly represented by an equivalent homogeneous
spheroid. This approximation is tailored to preserve
important quantities such as particle mass, aspect ratio
and bulk effective density [24,25]. Implementations
assuming randomly-oriented [23] and arbitrarily aligned
[26] scatterers are both readily available. This is much
faster than using a DDA solution and, depending on the
approximation algorithm used, may preserve only the
structural information that has a significant impact on
scattering behavior.

Aggregate formulations have been proposed using col-
lections of columns [18,27,28], bullet rosettes [1,18,29],
planar dendritic snowflakes [18,30,31], hexagonal plates
[18,32,33], stellar type crystals [34] and spheres [35].
Several studies provide explicit comparisons of DDA

aggregate results with other methods. Kim [27] compared
a Mie-based representation of simple columnar aggregates
with the DDA and established that Mie theory did not
adequately predict single-scattering properties such as
cross-sections and asymmetry parameter for size para-
meters greater than 2.5. Westbrook et al. [36] presented
early small bullet rosette aggregates. Hogan and West-
brook [16,17] expanded these aggregate formulations in
the domain of small particles using a modified version of
Rayleigh–Gans theory. Nowell et al. [1] compared bullet
rosette aggregates using the DDA with combinations of
solid and soft spheres and oblate ellipsoids.

Fractal shape models have also been developed
[31,33,35,37]. Maruyama and Fujiyoshi [35] aggregated
low-density spheres with variable densities. Ishimoto [37]
considered particles with no particular shape and various
fractal dimensions. Schmitt and Heymsfield [33] used an
iterative algorithmwere repeating hexagonal crystals were
randomly added to a growing seed crystal. Tyynelä et al.
[31] used a fractal model based on results from Ishimoto
[37] and compared against an aggregation models based
on Westbrook et al. [29] comprised of either stellar or
fernlike dendrites.

The DDA, Rayleigh–Gans and T-matrix methods, how-
ever, usually produce very different results when applied
to aggregate snowflakes [1,30,31]. Aggregates are larger
ice particles resulting from collision, deposition and
repeated freezing/melting processes [38]. They have very
complicated shapes. When modeling aggregates using the
DDA, their lattice structures should ideally match observed
projected size-density, aspect ratio and fractal dimension
relations [1]. These parameters are easy to incorporate into
a DDA model. For validation, comparisons have been
commonly made against a hard-sphere model [27,39], in
which Mie theory calculates scattering properties of
equivalent solid ice spheres. These spheres preserve ice
particle mass while ignoring other information such as
effective density and aspect ratio. As aggregate morphol-
ogies incorporate a significant amount of air into the ice
lattice, this approach produces equivalent spheres that are
much smaller in diameter (microns vs. mm). The resulting
hard-sphere backscatter is frequently an order of magni-
tude larger than DDA results for high frequencies and large
particles [1,27,40].

Soft spheroid models have also been used
[13,24,30,31,41–46]. In such models, it is possible to pre-
serve particle mass, size and aspect ratio. However, the
shape of the particle being considered is different. Instead
of having separate regions of ice and air, these models
construct ellipsoids made of a combined ice/air medium.
This medium has a refractive index intermediate to ice and
air, and the refractive index is determined by a mixing
relation [47–49]. This mixing relation is itself dependent
on the effective (iceþair) density of the source snowflakes.
The concept of effective density is poorly-defined for
snowflakes [42]. While soft spheroid models preserve
mass, a reference volume must be selected.

A common trend in soft-spheroid results is to use the
concept of a geometric bounding surface [24,30,50], such as a
circumscribing circle/sphere/ellipsoid [16,34,51], a root mean
square (RMS) sphere [30], or a radius of gyration (RG) sphere
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