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a b s t r a c t

Various methods have been developed and tested over the years to solve the radiative
transfer equation (RTE) with different results and trade-offs. Although the RTE is exten-
sively used, the approximate diffusion equation is sometimes preferred, particularly in
optically thick media, due to the lower computational requirements. Recently, multi-scale
models, namely the domain decomposition methods, the micro–macro model and the
hybrid transport–diffusion model, have been proposed as an alternative to the RTE. In
domain decomposition methods, the domain is split into two subdomains, namely a
mesoscopic subdomain where the RTE is solved and a macroscopic subdomain where the
diffusion equation is solved. In the micro–macro and hybrid transport–diffusion models,
the radiation intensity is decomposed into a macroscopic component and a mesoscopic
one. In both cases, the aim is to reduce the computational requirements, while main-
taining the accuracy, or to improve the accuracy for similar computational requirements.
In this paper, these multi-scale methods are described, and the application of the micro–
macro and hybrid transport–diffusion models to three-dimensional transient problems is
reported. It is shown that when the diffusion approximation is accurate, but not over the
entire domain, the multi-scale methods may improve the solution accuracy in comparison
with the solution of the RTE. The order of accuracy of the numerical schemes and the
radiative properties of the medium play a key role in the performance of the multi-scale
methods.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems in mathematics, biology, physics, chem-
istry and engineering encompass different spatial and/or time
scales. The mathematical modeling of such problems requires
a multi-scale approach. This may be defined as a “general
framework for formulation and design of methods which

model a system’s behavior governed by a hierarchy of scales,
both spatial and temporal, and their interactions, and provide
a seamlessly coupled platform through which the interacting
scales mutually exchange their information” [1]. The range of
relevant length and time scales in materials science, for
example, includes the electronic, atomic, microscopic, meso-
scopic and macroscopic, or continuum scales [2]. An efficient
numerical solution of a multi-scale problem requires that
appropriate numerical methods are used for every relevant
scale, and coupled to allow effective data exchange between
different scales.
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In some multi-scale problems there is no clear scale
separation, as in the case of turbulent fluid flow and in
radiative transfer. The modeling and numerical simulation
of radiative transfer phenomena has been a very active
field of research during the last decades. Indeed, radiative
transfer underlies numerous technological applications
(e.g., combustion, optical tomography, solar energy), as
well as more fundamental research. Because of the multi-
scale character of most radiative transfer phenomena, and
since analytical solutions are available only in a few sim-
plified cases, the numerical simulation of radiative transfer
phenomena is still a challenging task nowadays. According
to the physical context, radiative transfer phenomena can
be modeled by means of two classes of mathematical
models: the radiative transfer equation (RTE) and the dif-
fusion equation (DE) (see [3]).

At the top of the hierarchy of models, the RTE appears
as the reference from a modeling point of view. The RTE
accurately describes radiation transport in media under
local thermal equilibrium, yielding the time evolution of
the radiation intensity, which depends on 6 dimensions
(space, direction and wavelength) plus time. However, the
numerical solution of the RTE may be computationally
expensive, particularly when the optical thickness of the
medium is high. The discrete ordinates method (DOM), the
finite volume method (FVM) and the Monte Carlo (MC)
method become inefficient in the so-called diffusive
regime. Indeed, the numerical parameters for the DOM or
FVM methods, such as the grid size and time step, must
satisfy severe constraints for stability reasons. As far as the
Monte Carlo method is concerned, the computational cost
may be prohibitive due to the high number of scattering
events, and the numerical convergence becomes slower.

At the bottom of the hierarchy, the DE describes
radiative transfer at the macroscopic scale, yielding the
incident radiation, which depends on time, the three
spatial dimensions and wavelength. The DE is based on the
assumption that the radiation intensity is nearly isotropic.
Obviously, when this assumption is not valid, which is the
case when the medium or part of the medium is not
optically thick, or when boundary conditions or radiative
sources have a strong influence on radiative transfer, the
results are inaccurate. Moreover, finding accurate bound-
ary conditions for the DE may be a complicated problem.

The required computational time for the solution of the
RTE is much larger than that for the solution of the DE for
realistic multi-dimensional simulations. Hence, several
computational methods have been developed that com-
bine the RTE and the DE, aiming at the improvement of the
computational efficiency of radiative transfer simulations
without compromising the solution accuracy [4]. These
methods are an interesting option in problems where
diffusive and kinetic regimes coexist, e.g., media with a
low-scattering region and a strongly scattering region, or
in problems where multiple spatial and temporal scales
are present. This multi-scale character makes the devel-
opment of numerical models and the associated simula-
tions a real challenge.

In this work, our goal is to report recent advances on
multi-scale models for radiative transfer, namely a domain
decomposition strategy [5], a micro–macro model [6] and

a hybrid transport–diffusion model [7], are presented.
These approaches involve an interesting trade-off between
accuracy and computational requirements and offer a good
alternative to the use of a full DE or RTE.

One possible strategy to deal with multi-scale models is
to couple the DE and the RTE through a spatial domain
decomposition approach (DD), where the domain is
decomposed into a mesoscopic subdomain, in which the
RTE is solved, and a diffusive one, in which the DE is
solved. Several variants of the DD method have been
reported, depending on the numerical methods used to
solve the RTE and the DE, and on how the coupling
between the two subdomains is implemented [4,8–11].
Most of these works have been developed for light pro-
pagation in tissues for biomedical applications. The treat-
ment of the interface between the macroscopic and the
microscopic zones represents a critical issue. In fact, the
boundary conditions of the DE must be consistent with the
boundary conditions of the RTE, which is not an easy task.
Hence, a buffer zone between the kinetic and diffusive
subdomains was introduced to overcome this issue [5,12],
which avoids the need to define boundary conditions for
the DE.

Another strategy is to apply a multi-scale model in the
entire domain. A first model presented in this work is the
micro–macro (MM) model, which was originally devel-
oped in other research fields [13–15], and recently applied
to the radiative transfer equation [16]. It is based on the
decomposition of the dependent variable of the governing
equation into a macroscopic component and a mesoscopic
one. The micro–macro model satisfied by the incident
radiation, G, plus a correction, ε, is equivalent to the RTE.
The solution of the RTE is recovered by simply adding the
contributions of the macro (G) and kinetic (ε) components.
The resulting model involves a two-way coupled system,
the numerical approximation of which needs artificial
boundary conditions for the macroscopic unknown G.
Moreover, due to the two-way coupling, a Monte Carlo
method cannot be directly applied to the system. However,
it was shown that some improvements are observed when
grid based methods are employed, compared to the
numerical solution of the full RTE, especially when the
system is close to the diffusive regime [16].

The last model described in this paper, referred to as
hybrid transport–diffusion (HTD) model, relies also on a
decomposition of the radiation intensity [7]. In fact,
expressing the radiation intensity as the sum of Glim,
where Glim is the solution of the DE, plus a correction ε,
one can write a one-way coupled model satisfied by Glim

and ε. An approximate solution of the RTE is calculated by
adding the macroscopic and the kinetic components, as in
the MM model. However, in contrast to the MM model, a
Monte Carlo method can be easily applied to the kinetic
equation. Indeed, since the DE does not depend on the
kinetic component ε, it can be solved independently on
the whole time-space interval under consideration. Then, a
Monte Carlo method can be easily used since the kinetic
part of the HTD system only differs from the RTE by the
presence of a source term depending on Glim. Hence, the
linear structure is preserved, which is a real advantage
when using a Monte Carlo method. Moreover, since
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