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a b s t r a c t

Based on classic Maxwell’s theory and the Gauss Theorem we extended the Optical
Theorem to the case of a penetrable particle excited by a local source deposited near a
plane interface. We demonstrate that the derived Extinction Cross-Section involves the
total point source radiating cross-section and some definite integrals responsible for the
scattering by the interface. The derived extinction cross-section can be employed to
estimate the quantum yield and the optical antenna efficiency without computation of the
absorption cross-section.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction.

Many practical applications require analysis of electro-
magnetic scattering properties of local structures under
point source excitation. Optical antennas have been intro-
duced to enhance the energy transfer between a localized
source and the detector or the free-radiation field. This
enhancement can be achieved particularly by increasing
the antenna efficiency. Surface plasmon resonances (PR) or
localized PR make optical antennas particularly efficient at
selected frequencies, which are important for biological
sensing and detection [1,2]. Molecule fluorescence is
important for the development of optical antennas
employed in surface enhanced spectroscopy and micro-
scopy [3]. Quantitative analysis of single-molecular fluor-
escence or photoluminescence of a quantum dot demands
evaluation of the scattering efficiency of a local source in
the presence of clusters of particles. Besides optimization
of the antenna efficiency with respect to the emitter

location, as well as averaging of enhancement factors
under molecular fluorescent excitation requires multiple
evaluation of the quantum yield for different polarizations
and emitter locations [4,5]. Both the antenna efficiency
and the quantum yield can be computed from the ratio of
the scattered power Psc to the total power PscþPabs

including the absorbed power Pabs of the plasmonic
structure η¼ Psc= PscþPabsð Þ [6]. Employing metal plasmo-
nic nanostructures and PR excitation leads to the necessity
to estimate the absorption cross-section of the structure at
a PR regime when the relative field intensity near the
plasmonic structure exceeds 108–1010 of magnitude [7,8].
All these circumstances require multiple computations of
the energy flux over the elements of the plasmonic
structure under investigation, which is needed to evaluate
the absorption power Pabs. One a way to resolve this issue
is to use the Optical Theorem (OT) to evaluate the
antennas efficiency or the quantum yield η, which can be
written in terms of scattering and extinction cross-sections
only η¼ Csc=Cext .

The optical theorem has a long history; its occurrence
in electromagnetic theory started more than one hundred
years ago and similar theorems can be found in acoustical
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scattering and quantum mechanics [9]. The term OT has
been well known ever since [10]. The OT is a powerful
result in scattering theory, relating the extinction cross
section of a structure to the scattering amplitude in the
forward direction. Over the years, many derivations and
implementations of the theorem have been provided
[11–13]. In computational electromagnetics this theorem
is particularly useful for checking or verification of the
results of light scattering codes, since for a non absorbing
particle, the integral of the scattered power over the total
solid angle must be proportional to the imaginary part of
the forward scattering amplitude [14,15]. The theorem has
been reconsidered and generalized by a number of
researchers to consider plane wave scattering by a particle
near an interface between media with different refractive
indices [16], and electromagnetic wave propagation in
anisotropic media [17]. The OT was extended to the case
of seismic wave propagation [18,19], as well as rough
surfaces and beam excitation [20,21]. Excitation by a point
sources on the other hand needs a new approach, and the
OT has up to now been extended to point source excitation
of a particle located in free space only [22,23].

In the present paper we extended the OT to the case of
a penetrable particle excited by a point dipole deposited
near a plane interface separating media with different
refractive indices. We use classic Maxwell’s theory and the
Gauss Theorem as basic techniques.

2. Optical theorem for the local source on a plane
interface.

Let us consider an excitation of a bounded penetrable
particle Di with a smooth surface ∂Di by an electric dipole
of momentum p deposited at a pointM0, which is located
outside ofDi. For the considered scattering geometry see
Fig. 1. Assume that the whole space ℝ3 is constituted of
two half-spaces D0 z40ð Þ and D1 zo0ð Þ are separated by
the plane interfaceΞ z¼ 0ð Þ. Let the particle Di be located
inside the upper half-space Di �D0 andM0AD0. Then the
mathematical statement of the scattering problem can be
written in the form

∇�H0 ¼ jkε0E0þpδðM�M0Þ; ∇� E0 ¼ � jkμ0H0 in D0;

∇� Hl ¼ jkεlEl; ∇� El ¼ � jkμlHl in Dl; l¼ 01; i;

nq � EiðqÞ�E0ðqÞð Þ ¼ 0;
nq � HiðqÞ�H0ðqÞð Þ ¼ 0; qA∂ Di;

ez � E1ðQ Þ�E0ðQ Þð Þ ¼ 0;
ez � H1ðQ Þ�H0ðQ Þð Þ ¼ 0;

QAΞ;

lim
r-1

Z
Σr

ffiffiffiffiffi
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p
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r
r
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��� ���2dσ ¼ 0; r¼ Mj j; l¼ 0;1:

ð1Þ
here nq - unit internal normal at ∂ Di, ez - basic vector of

the Cartesian coordinate system (x, y, z) orthogonal to Ξ
and Σr - sphere of r - radius, centered at the plane Ξ. At
infinity we use the Silver-Müller radiation conditions in
week sense to avoid problem with surface waves [24].
Assume that∂ Di � Cð2;αÞ, εi;μi are constants inside Di

andImεi;μir0, Imε0;1;μ0;1 ¼ 0. The time dependence was
chosen as expfjωtg. Then the boundary value problem (1)
has a unique solution [25].

Choose a sphere DR of R - radius, centered at the plane
Ξ and enclosing both Di and point M0 inside, its boundary

will be referred to as ΣR. The plane Ξ divides DR by two
half-spheresD7

R , deposited in D0;1, let Σ
7
R be parts of ΣR

belonging to D7
R respectively. Applying the Gauss diver-

gence theorem [26] to the solution of the problem (1) -
fieldsE0 and Hn

0 in the domain Dþ
R =Di we obtainR
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where J0 ¼ pδðM�M0Þ and ΞR: ¼ MAΞ: Mj jrR
� �

is a part
of the plane Ξ. Taking the real parts from both sides of (2)
and rewriting the integrals in the right part we get
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Similar application of Gauss theorem inside Di leads to
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The right part of (4) we will refer as the absorption

cross-section Cabs, then (3) accepts the form
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Using Gauss theorem in the D�
R domain and taking the

real part we obtain
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Combining Eqs. (5) and (6) leads to
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We next consider the Far Field Patterns F0;1ðθ;φÞ of the
fields [27] in the upper and lower half-spaces D7

R

E0;1ðMÞ ¼ e� jkn0;1r

r
F0;1ðθ;φÞþo

1
r


 �
; r-1; za0:

The far field patterns are defined at unite hemi-sphe-
res Ωþ ¼ 0rφr3603;0rθo903� �

, Ω� ¼ 0rφr
�

3603; 903oθr1803g where n0;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0;1μ0;1

p
. Because Eq.

(7) is valid for any R we transform the integrals in the left
side of Eq. (7) to integrals over the upper and lower hemi-
spheres Σ7

R employing the radiation condition. It follows
that

lim
R-1

Re
Z
Σ þ

R

E0 �Hn

0

� �
U
r
r
dσ ¼ Re lim

R-1

Z
Σ þ

R

E0 U Hn

0 �
r
r

h i
dσ

¼
ffiffiffiffiffiffi
ε0
μ0

r
lim
R-1

Z
Σ þ

R

E0j j2dσ ¼
ffiffiffiffiffiffi
ε0
μ0

r Z
Ωþ

F0j j2dω

Y. Eremin, T. Wriedt / Journal of Quantitative Spectroscopy & Radiative Transfer 166 (2015) 1–52



Download	English	Version:

https://daneshyari.com/en/article/5427822

Download	Persian	Version:

https://daneshyari.com/article/5427822

Daneshyari.com

https://daneshyari.com/en/article/5427822
https://daneshyari.com/article/5427822
https://daneshyari.com/

