Journal of Quantitative Spectroscopy & Radiative Transfer 167 (2015) 10-22

Contents lists available at ScienceDirect -
ournal of
uantitative
pectroscopy &

Journal of Quantitative Spectroscopy & o
Radiative Transfer ranstr

E1 . SEVIER journal homepage: www.elsevier.com/locate/jgsrt

Fast linear solver for radiative transport equation
with multiple right hand sides in diffuse optical
tomography

@ CrossMark

Jingfei Jia®!, Hyun K. Kim ™!, Andreas H. Hielscher *><*

2 Columbia University, Department of Biomedical Engineering, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027,
United States

b Columbia University Medical Center, Department of Radiology, 630 West 168th Street, New York, NY 10032, United States

€ Columbia University, Department of Electrical Engineering, 1300 S.W. Mudd, 500 West 120th Street, New York, NY 10027, United States

ARTICLE INFO ABSTRACT

Article history:

Received 2 March 2015
Received in revised form

20 July 2015

Accepted 21 July 2015
Available online 1 August 2015

It is well known that radiative transfer equation (RTE) provides more accurate tomographic
results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction
codes have limited applicability in practice due to their high computational cost. In this article,
we propose a new efficient method for solving the RTE forward problem with multiple light
sources in an all-at-once manner instead of solving it for each source separately. To this end, we
introduce here a novel linear solver called block biconjugate gradient stabilized method (block
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BiCGStab) that makes full use of the shared information between different right hand sides to
accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for
additional acceleration under limited threads situation. We evaluate the performance of this
algorithm with numerical simulation studies involving the Delta-Eddington approximation to
the scattering phase function. The results show that the single threading block RTE solver
proposed here reduces computation time by a factor of 1.5-3 as compared to the traditional
sequential solution method and the parallel block solver by a factor of 1.5 as compared to the
traditional parallel sequential method. This block linear solver is, moreover, independent of
discretization schemes and preconditioners used; thus further acceleration and higher accuracy
can be expected when combined with other existing discretization schemes or preconditioners.

Published by Elsevier Ltd.

1. Introduction

Diffuse optical tomography (DOT) has become a popular
area of research that attracts significant and increasing atten-
tions [1,2]. In DOT, low-energy near-infrared (NIR) light is used
to probe biological tissue. Measurements of transmitted and
reflected light intensities are used to recover a spatial
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distribution of various optical properties, for instance, absorp-
tion and scattering coefficients inside the medium under
investigation. Tissues optical properties vary depending on
the type and location of tissue [3]; thus reconstructed optical
properties can provide physiologically important information
such as oxy-hemoglobin (HbO,) and deoxy-hemoglobin (Hb)
in tissue. DOT has applied mainly to brain imaging [4,5], breast
imaging [6-9], vascular imaging [10], small animal imaging
[11,12] and imaging of finger joints [13,14].

The DOT problem can be described in general terms as an
inverse problem that is defined to find an optimal set of
optical properties that minimizes a mismatch between


www.sciencedirect.com/science/journal/00224073
www.elsevier.com/locate/jqsrt
http://dx.doi.org/10.1016/j.jqsrt.2015.07.015
http://dx.doi.org/10.1016/j.jqsrt.2015.07.015
http://dx.doi.org/10.1016/j.jqsrt.2015.07.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2015.07.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2015.07.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2015.07.015&domain=pdf
mailto:jj2523@columbia.edu
mailto:ahh2004@columbia.edu
http://dx.doi.org/10.1016/j.jqsrt.2015.07.015
http://dx.doi.org/10.1016/j.jqsrt.2015.07.015

J. Jia et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 167 (2015) 10-22 11

predictions and measurements of light intensities. Predic-
tions and measurements are made on the tissue surface with
a known distribution of light sources. Multiple forward
problems need to be solved in each inverse iteration to
generate an updating direction for the target variables from
the current estimate of optical properties in tissue. Tradi-
tional unconstrained approach formulates the DOT problem
as [15]:
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where y is the optical property of the imaging object and F,
is the forward model of light intensity distribution defined as
a function of y, Ns is the number of sources used, M® is the
measurement and b® represents the right hand side of the
discretized forward model given by Ay® = b® with the kth
light source, where A is the linear operator generated by the
discretization of the forward light propagation model and
w® is the vector that contains light intensities of all dis-
cretized directions and locations in the medium for the kth
light source, Q denotes the measurement operator that
models the light propagation from the object surface to the
detectors and R(u) is the regularization term on the optical
property. The PDE-constrained approach that does not
require an explicit solution of the forward model of light
intensities can be formulated as follows [16,17]:
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where y® denotes the light intensity distribution of the
forward model, R(x) is the regularization term.

The forward light propagation model plays a very impor-
tant role in DOT since an improper light propagation model
will lead to inaccurate reconstruction results. One frequent
used approach to model photon propagation is the Monte
Carlo (MC) method [18]. In this approach photons are
considered as individual particles. Launching millions of
them into a medium and tracking each one individually,
one obtains a statistical approximation of the real distribu-
tion of photons in the medium. One can show that for an
infinite number of photons, the so-calculated distribution of
photons converges to the correct results. However, because
of the substantial computational cost this approach is not
very practical when used in combination with large-scale
inverse solvers. Less computationally demanding are deter-
ministic light propagation models that are based on the
radiative transfer equation (RTE) and its diffusion approx-
imation (DA). Of these two the DA model is most commonly
used in tissue optics, because it is easy to implement and
provides solutions very fast. However, DA-based results are
often not accurate enough when considering small-tissue
geometries, high-absorbing and low-scattering tissues, and
void-like region. In these cases the diffusion approximation is
not valid and RTE-based codes need to be employed [19].

The RTE is a partial differential-integro equation in
which a dependent variable (i.e., radiance in units of
W/cm?/sr) is defined as a function of two independent
variables (i.e., spatial position and angular direction). Due to

strong coupling in directions, analytic solutions of RTE are
not available for most cases and numerical solvers need to
be implemented. Recently, several efficient RTE solvers have
been developed (see [20-23] and their references). How-
ever, to our best knowledge, all existing algorithms are
designed to solve a single right hand side. Therefore, only
one source is considered. On the other hand, RTE-based DOT
codes are based on multiple right hand sides, which
correspond to multiple light sources illumination. Tradi-
tional methods to solve multiple right hand sides are to
solve each right hand side separately or solve multiple right
hand sides simultaneously in parallel [24,25]. However, the
extensive computational power those parallel solvers
required are not always available; hence we focus here on
the numerical method for solving multiple right hand sides
simultaneously on a single thread or limited threads (thread
number is less than source number).

In order to solve multiple right hand sides efficiently, we
make full use of the fact that the same coefficient matrix is
shared among multiple right hand sides in the linear system
resulting from multiple sources illumination:
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where ¥ is the matrix of solution vectors ™, @, ... 0
and B of right hand sides b, b'®, ..., b™ pertaining to the
ith light source illumination. Methods for solving such
linear systems with multiple right hand sides have been
extensively studied in other areas [26-31]. The block Krylov
subspace methods have been shown to be effective com-
pared to other solvers designed for multiple right hand
sides [32,33]. In our work, we introduce the Krylov subspace
block BiCGStab algorithm [34]. Compared to other methods,
it has the advantages of low memory requirement, simple
structure and stable convergence. Besides these, it can be
readily combined with other numerical techniques such as
high order differencing schemes or acceleration schemes to
obtain additional speedup or increased accuracy with little
effort.

The remainder of the paper is organized as follows. We
first review Krylov subspace and block Krylov subspace
methods and introduce the block BiCGStab algorithm in
Section 2. A second order finite volume scheme combined
with discrete ordinates for discretization of RTE in
frequency-domain is introduced in Section 3. Then two
parallelization methods of the block BiCGStab are proposed
in Section 4. Numerical results are presented in Section 5
that address the performance evaluation of the block
BiCGStab algorithm. Finally our conclusions are summarized
in Section 6.

2. Preconditioned block linear solver for RTE with
multiple sources

2.1. Krylov subspace method and preconditioned BiCGStab
algorithm

To understand the block Krylov subspace algorithm, we
begin with a brief introduction of traditional Krylov sub-
space algorithms. Krylov subspace methods are the most
widely used iterative methods so far for large-scale sparse
linear systems Ax=>b. In Krylov subspace methods, we
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