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a b s t r a c t

A direct collocation meshless method based on a moving least-squares approximation is
presented to solve polarized radiative transfer in scattering media. Contrasted with
methods such as the finite volume and finite element methods that rely on mesh
structures (e.g. elements, faces and sides), meshless methods utilize an approximation
space based only on the scattered nodes, and no predefined nodal connectivity is required.
Several classical cases are examined to verify the numerical performance of the method,
including polarized radiative transfer in atmospheric aerosols and clouds with phase
functions that are highly elongated in the forward direction. Numerical results show that
the collocation meshless method is accurate, flexible and effective in solving one-
dimensional polarized radiative transfer in scattering media. Finally, a two-dimensional
case of polarized radiative transfer is investigated and analyzed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Solar light propagating through the atmosphere, the
ocean, and vegetation is often analyzed in the framework
of scalar radiative transfer theory. However, due to the
electromagnetic nature of light, the effects of polarization
should be considered in the treatment of scattering,
reflection, and transmission [1,2]. The interaction of light
with media, such as scattering by particles and reflection
at phase boundaries, will generally alter the polarization of
the incident beam [3,4]. Polarization is also decoupled
from the frequency of the light, giving extra degrees of
freedom. Accurate and efficient polarized radiative transfer
calculations are essential in many applications, such as the
retrieval of atmospheric and oceanic constituents from
remotely sensed satellite observations [5]. For skylight

detection, the additional polarimetric measurements can
significantly improve the retrieval of some aerosol para-
meters, and several space-borne and airborne instruments
have been designed to measure the polarization of sky-
light. This also has potential applications in other disci-
plines, such as biomedical optical tomography [6]. Many
applications in medical diagnostics profit from polariza-
tion properties, e.g. noninvasive glucose sensing, tissue
anisotropy and concentration measurements.

Considering the importance of polarization information,
polarized radiative transfer is an active area of research. The
standard vector radiative transfer equation (VRTE), which is
applied to the propagation of light in a plane-parallel layer,
has been utilized for more than half a century [7]. To
investigate the polarization characteristics in graded index
media, a corresponding VRTE was derived [8]. Recently, for
astrophysical applications, a VRTE in an orthogonal curvi-
linear coordinate system was derived [9]. Many numerical
methods have been proposed and developed to investigate
polarized radiative transfer, including Monte Carlo (MC)
methods [10–14], FN methods [15], discrete ordinate (DO)
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methods [16–19], successive order of scattering (SOS) meth-
ods [20–23], matrix operator methods [24], etc. To compare
computational performance for different numerical meth-
ods, Kokhanovsky et al. [25] summarized seven codes of
vector radiative transfer, including three techniques based
on the DOmethod, two MCmethods, the SOS method, and a
modified doubling–adding technique. In that reference,
benchmark data for one-dimensional vector atmospheric
radiative transfer were presented.

Recently, a new class of meshless methods has been
applied to solve the scalar radiative transfer equation (SRTE)
in scattering media [26,27]. Compared to traditional numer-
ical methods based on equation discretization (such as the
finite difference method, the finite volume method and the
finite element method), meshless methods have an advan-
tage, since they only use scattered nodes to discretize the
domain of the problem. In addition, the meshless method is
much faster than ray tracing methods such as MC and zone
methods. Due to the characteristics of flexibility and con-
venience, meshless methods have been developed to solve

radiative transfer problems. To improve the numerical sta-
bility of meshless methods, a new second-order form of
SRTE was presented by Zhao et al. [28], and Luo et al. [29]
applied a kind of upwind scheme to solve the SRTE for
strongly inhomogeneous media. To date, the meshless
method hasn’t been used to solve VRTE.

In this work, a direct collocation meshless method
(DCM) is extended to solve the multidimensional VRTE.
In this method, the angular discretization is based on the
discrete-ordinates approach, where the spatial discretiza-
tion is conducted using a collocation approach. Here, the
trial function is constructed by a moving least squares
approximation. Several test cases of polarized radiative
transfer are taken to verify the performance of the method.
The paper is organized as follows. Firstly, the theory of
VRTE is introduced, and Lambertian boundary conditions
are presented. Then, the formulation and solution steps of
the DCM are presented in detail. In Section 3, two one-
dimensional cases are studied to test the stability and
convergence characteristics of the present method. Finally,

Nomenclature

A stiffness matrix
a coefficient matrix
a expansion coefficient of Legendre polynomial
B source matrix
d diameter of the support domain, m
F incident light irradiance, W/m2 sr
H height, m
Δh local discrete length, m
I radiation intensity, W/m2 sr
i, j, k unit vectors of x-axis, y-axis and z-axis direc-

tions, respectively
i1, i2 rotation angles
L rotation matrix
M single scattering Mueller matrix
m total number of nodes in the computatio-

nal domain
Ν nodal basis function
Nc number of the incident directions for colli-

mated radiation sources
Nloc number of the local nodes in Vr

p vector of Legendre polynomial
p order of Legendre polynomial
pj polynomial basis function of jth order
Q linear polarization aligned parallel or perpen-

dicular to the z-axis, W/m2 sr
Rd reflection matrix for Lambertian surface
r spatial coordinate vector
r distance between ri and r
S Stokes vector matrix
S Stokes vector
U linear polarization aligned 7451 to the z-axis,

W/m2 sr
V circular polarization, W/m2 sr
Vr spatial subdomain
w weight function

Z scattering phase matrix

Greek symbols

δ Dirac delta function
φ azimuth angle
κe extinction matrix
κe extinction coefficient, m�1

κs scattering coefficient, m�1

λ support domain amplifying factor
μ, η, ξ direction cosines of x-axis, y-axis and z-axis

directions, respectively
Θ scattering angle
θ zenith angle
ρ reflection coefficient
τ optical thickness
Ω, Ω0 vector of radiation direction
Ω0 solid angle, sr
ω single scattering albedo

Subscripts

0 inflow
c collimated light
col column
d diffuse light
i incident direction
loc local nodes
row row
s scattered dirction
w wall

Superscript

T transposition
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