
Towards accelerating irregular EDA applications with GPUs

Hao Qian n, Yangdong Deng, Bo Wang, Shuai Mu

Institute of Microelectronics, Tsinghua University, Beijing, China

a r t i c l e i n f o

Article history:

Received 5 October 2010

Received in revised form

1 April 2011

Accepted 27 May 2011
Available online 23 June 2011

Keywords:

GPU

CUDA

Sparse matrix

EDA

Data parallel

Static timing analysis

Sparse matrix vector product

Conjugate gradient

Breadth first search

Survey propagation

RTL simulation

CMB

Message-passing

a b s t r a c t

Recently graphic processing units (GPUs) are rising as a new vehicle for high-performance, general

purpose computing. It is attractive to unleash the power of GPU for Electronic Design Automation (EDA)

computations to cut the design turn-around time of VLSI systems. EDA algorithms, however, generally

depend on irregular data structures such as sparse matrix and graphs, which pose major challenges for

efficient GPU implementations. In this paper, we propose high-performance GPU implementations for a

set of important irregular EDA computing patterns including sparse matrix, graph algorithms and

message-passing algorithms. In the sparse matrix domain, we solve a core problem, sparse-matrix

vector product (SMVP). On a wide range of EDA problem instances, our SMVP implementation out-

performs all prior work and achieves a speedup up to 50� over the CPU baseline implementation. The

GPU based SMVP procedure is applied to successfully accelerate two core EDA computing engines,

timing analysis and linear system solution. In the graph algorithm domain, we developed a SMVP based

formulation to efficiently solve the breadth-first search (BFS) problem on GPUs. We also developed

efficient solutions for two message-passing algorithms, survey propagation (SP) based SAT solution and

a register-transfer level (RTL) simulation. Our results prove that GPUs have a strong potential to

accelerate EDA computing through designing GPU-friendly algorithms and/or re-organizing computing

structures of sequential algorithms.

Crown Copyright & 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

Integrated circuits (ICs) have become the most complex
machine made by the human being. Today IC designers depend
on the Electronic Design Automation (EDA) software to properly
handle the ever-increasing IC complexity in a timely fashion. The
computing demand for EDA software is still fast rising with the
advent of 32 nm technology node. For instance, IC designers have to
spend a couple of hours to perform a timing analysis on a 10 M-gate
design, while a gate level simulation of a full chip could take
weeks or even months. Another example is the circuit simulation
problem. Given a Giga-Hertz phase-lock loop (PLL) circuit,
a transient analysis would need to simulate the circuit for
millions of cycles and thus a complete run would take months
to finish. However, today’s electronic appliances typically have a
fixed market window as short as 6 months [1]. Due to the
prohibitive CPU time for design implementation and verification,
such a tight schedule suggests that only a small portion of the
complete solution space can be explored in the design process if
the productivity of EDA software cannot scale accordingly. On the

other hand, the IC product development cost can reach $100M at
32 nm technology node [2]. Such an overwhelming cost suggests
that IC designers have to perform even more intensive verification to
minimize the possibility of buggy designs. As a result, future EDA
software tools have to deliver even higher computing throughput.

In the history of EDA technology, the constantly increasing
processing capability mainly came from the synergy of two
forces: (1) development of smarter algorithms and/or more
efficient software implementations and (2) scaling of CPU perfor-
mance. Unfortunately, now the single-CPU performance is
relatively saturating. Since the semiconductor process is still
offering growing integration capacity, multi-core processors are
inevitably becoming the dominant computing resources for EDA
applications. It is thus essential to develop parallel solutions for
the EDA industry such that the momentum of function increase in
VLSI designs can be maintained [3].

Recently, general purpose computing on graphic processing
units (GPUs) has become a very important trend of high perfor-
mance computing [4]. Unlike multi-core CPUs that generally
utilized a task level parallelism, graphic processing units (GPUs)
exploit a data parallel programming model. Upon receiving a
workload, a GPU would launch tens of thousands of fine-grain
threads concurrently, with each thread executing the same
program but on a different data set. Modern GPUs could deliver

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

0167-9260/$ - see front matter Crown Copyright & 2011 Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.vlsi.2011.05.004

n Corresponding author.

E-mail address: cyqh1028@hotmail.com (H. Qian).

INTEGRATION, the VLSI journal 45 (2012) 46–60

www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2011.05.004
mailto:cyqh1028@hotmail.com
dx.doi.org/10.1016/j.vlsi.2011.05.004

a very high computing throughput. For example, NVIDIA’s flag-
ship GPU, Fermi, could reach a peak floating-point throughput of
1.5 TFLOPS [5,6]. On workloads with appropriate computing
and memory access patterns, GPU could even attain a speedup
of over 100� .

Accordingly, it is appealing to unleash the computing power of
GPU for EDA applications. There are already a few papers, e.g.,
[7,8], and [9], presenting encouraging results on utilizing GPU to
solve specific EDA problems. However, a comprehensive investi-
gation on the foundation of GPU-based EDA computing is still
critical, especially because EDA applications mainly depend on
irregular data structures that are less amenable to GPUs.

The irregular data access patterns are determined by the very
nature of VLSI circuits. In a typical gate level netlist, while most
gates would only connect to a small but non-fixed number of
neighboring cells, certain gates could have hundreds of fan-outs.
Hence, the resultant data structures encoding the netlist have to
be irregular. One example is the connection matrix required by
the quadratic and force-driven placement algorithms, (e.g., [10]
and [11]). Based on our experiments on ISPD2006 benchmark
circuits [12], such matrices are extremely sparse, where most
rows only have 3–5 non-zeros and a very small number of rows
having hundreds or thousands of non-zeros. Major irregular EDA
computing patterns include sparse matrix manipulations and graph
algorithms. In fact, the authors of [3] identified major EDA applica-
tions and surveyed the underlying computing patterns. Out of the
17 major EDA applications surveyed in [3], 15 applications are built
on top of graph algorithms and 4 applications involved sparse
matrix computations.

Although it has long been known that sparse matrix operation
and graph algorithms possess rich data level parallelism [13], it is
extremely challenging to efficiently implement them on GPUs. For
example, the computation of sparse-matrix vector product
(SMVP) has been widely considered as one tough problem for
GPUs and only marginal speedup can be accomplished until
recently. In [14], Bell and Garland introduced a novel solution
on NVIDIA GPUs for the SMVP problem. Their GPU implementa-
tion could attain a throughput of �10 GFLOPS on problem
instances from different engineering domains where relatively
long strip of non-zeros exist. However, our experiments using the
code released with [15] indicate that the speedup is still limited
on the problem instances from EDA applications. As the second
example, the GPU implementations for the breadth-first search
(BFS) problem proposed in [17] could only achieve a good speed-
up on randomly created graphs where the number of edges on a
node is well bounded. For graphs extracted from real-world
applications, the GPU implementations in [17] do not have much
advantage over their CPU equivalents. The inefficiency for the
above two domains is largely due to GPU’s design philosophy,
which is to devote most die area on computing resources but little
on caches. For irregular applications where the memory access
patterns are unpredictable, GPUs would have difficulty to hide
memory latency. Another major hurdle for high performance on
GPUs is the poor load balance induced by the irregularity. When
performing parallel operations on sparse matrices and graphs, the
workload for each basic unit of parallel execution varies drama-
tically. However, GPU executes computation in a batched manner,
where a group of threads would have exactly the same instruction
schedule. Therefore, the slowest thread would determine the
execution time for this group of threads.

As a first step toward a systematic parallelization of EDA appli-
cations and based upon our preliminary work [18], we explore
efficient GPU solutions for two typical computing patterns, sparse
matrix and graph algorithmic operations. First, we developed an
efficient GPU implementation for the sparse matrix vector product
(SMVP) problem, which is the central piece of sparse matrix

operations. On a wide range of EDA problem instances, the GPU
based SMVP implementation could outperform all previously pub-
lished results and achieve a speedup of up to 50� . We then applied
the SMVP procedure to expedite two important EDA computing
patterns, circuit delay calculation and conjugate gradient based
linear system solution. A speed-up factor of one order of magnitude
is observed on both problems. Next we extended our work to the
graph algorithm domain by solving the classical breadth-first graph
traversal problem through a SMVP based formulation, which is more
aligned to the data parallel model of GPUs. In addition, the tech-
niques developed for SMVP can also be used to efficiently accelerate
a survey propagation (SP) based SAT solver [19] by a factor of
around 20� . We also develop GPU solutions to accelerate another
key EDA application, register transfer level (RTL) simulation. Our
GPU based RTL simulator can be faster by its CPU counterpart by a
factor of over 18. The most important message delivered in this
work is that the computing power of GPU can be successfully
unleashed through properly re-organizing sequential computing
structures and/or re-designing data parallel algorithms.

The remaining of this paper is organized as follows. In Section 2,
we review the typical irregular computing patterns found in EDA
applications. Next, the hardware architecture of NVIDIA GPUs and
the corresponding data parallel programming model are presented
in Section 3. In Section 4, we propose efficient techniques to solve
the sparse matrix vector product problem on GPUs. The perfor-
mance of the GPU implementations is also compared with their CPU
equivalents. Section 5 discusses how to apply our GPU based
techniques to accelerate a series of EDA applications such as static
timing analysis and the solution of linear systems for circuit
placement. In Section 6 we explain how the sparse-matrix vector
product pattern and its underlying techniques can be used to
accelerate graph algorithm problem, breadth-first graph traversal.
In Section 7, we introduce our GPU based message-passing solutions
for a survey propagation based satisfiability (SAT) problem solver
and a GPU-accelerated RTL simulator. Finally, we conclude the paper
and outline future research directions.

2. Irregular data structures of EDA applications

Many scientific and engineering applications are based on
regular data structures such as linear arrays and matrices (i.e.,
dense matrices). The access of data generally follows a predictable
pattern in such data structures. For instance, when computing the
product of a matrix and a vector, the data accessing pattern is
fixed as long as the dimension of the matrix is known. In addition,
a good level of load balance is relatively easy to achieve on a
parallel computer. In the matrix vector product example, the
workload can be evenly distributed if the computation of one
matrix row and the vector is assigned to a single processing
element (e.g., a CPU core). Hence, each processing element would
need to complete exactly the same amount of job. By taking
advantage of the predictability and good load balance, the regular
data structures are relatively amenable to parallel computers.

On the other hand, EDA applications are usually based on
irregular data structures such as sparse matrix and graphs. The
irregularity is determined by the very nature of IC circuit
structure. Fig. 1(a) illustrates a simple but commonly found
circuit pattern. The circuit can be stored in an EDA database as
a graph like the one illustrated in Fig. 1(b). In such a graph, every
signal is treated as a node and two nodes share an edge if they
are connected through a gate. Such a graph is obviously irre-
gular because the number of edges connected to one node is not
uniform across the graph. In addition, the graph is also very
sparse in the sense that most nodes only have a small number of
edges connecting to neighboring nodes, although a few high-fanout

H. Qian et al. / INTEGRATION, the VLSI journal 45 (2012) 46–60 47

Download English Version:

https://daneshyari.com/en/article/542795

Download Persian Version:

https://daneshyari.com/article/542795

Daneshyari.com

https://daneshyari.com/en/article/542795
https://daneshyari.com/article/542795
https://daneshyari.com

