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In many applications involving gaseous media at high temperature, accurate but
computationally efficient models are required for the radiative properties of gases. The
aim of the present work is to show how, by combining results from Polynomial Chaos
framework and Devyatov's Method Of Moments, one can provide simple estimates of the
transmission functions of gases both in uniform and non-uniform media. The proposed
model only involves polynomials. It is probably one of the simplest in terms of
mathematical formulation but also one of the most sophisticated, considering the
concepts that it involves. It can be applied in uniform and non-uniform media, where it
is shown to be equivalent, in terms of accuracy, to usual C-k models.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Radiative heat transfer in gaseous media arises in many
situations. Gases may be at high temperature, as in
combustion applications, or cold, as in some atmospheric
studies. The most accurate model to estimate the radiative
properties of gases is the so-called Line-By-Line (LBL)
approach [1,2]. It consists in calculating gas absorption
spectra at high resolution directly from spectroscopic
databases. Nevertheless, it is too computationally expen-
sive to be considered in many cases (such as in multi-
physic or three-dimensional problems) for which more
computationally efficient approaches are required.

Many approximate models were proposed during the
past decades. Most of them (especially those based on the
so-called k-distribution approach, [3]) achieve LBL accuracy
in uniform situations. Usually, their main source of error
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comes from the approximate treatment of non-uniformities
that requires additional assumptions, such as the scaling or
correlation of absorption spectra in various thermophysical
states. In most situations, those assumptions provide accu-
rate results, as soon as small temperature gradients are
found inside the gas. When higher gradients are involved,
recourse to more sophisticated techniques, such as the
Multi-Group [4,5], Fictitious gases [6] or Multi-spectral
[7,8] approximations, is required.

Recently, the generalized k-moment approach [9,10] was
proposed to estimate cumulative distribution functions
directly from LBL data. The method enables to represent
those functions as sums of polynomials of a certain type:
the so-called Cutteridge-Devyatov polynomials. It was
found to be accurate both for the calculation of distribution
functions and for applications in radiative heat transfer
(results, in terms of narrow band averaged spectra, are
provided in the case of H,0 in Ref. [10]).

The Generalized k-moment approach is based on Devya-
tov's Method of Moments (DMM) described in Refs. [11,12].
This method is similar to the so-called Polynomial Chaos
(PC) technique proposed in 1938 by Wiener [13], but
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introduced in a slightly different way. Some theoretical
links between the two approaches are discussed in this
paper (additional details are also provided in Appendix A).

The aim of the present work is to show how, by
combining results from PC and DMM, it is possible to
propose simple and accurate models for the radiative proper-
ties of gases in uniform and non-uniform media. It is
organized as follows: in Section 2, the method is introduced
by considering the problem of estimating a scaling function
between spectra in two distinct thermophysical states;
Section 3 is dedicated to a short description of the PC
framework; in Section 4, it is shown how it is possible to
replace the implicit equation associated to the scaling
assumption, which is highly nonlinear, by a simple poly-
nomial one from the use of concepts taken from PC theory.
Explicit formulae are also given to estimate transmission
spectra as polynomials; Sections 5 describe some results of
comparisons of the proposed Cutteridge-Devyatov Polyno-
mial Chaos (CDPC) model and reference Line-By-Line calcu-
lations. CDPC approximation is shown to provide results as
accurate as usual k-distribution approaches at a very low
computational cost (polynomials at orders 10-14) in uniform
and non-uniform situations.

2. Principle of the method

In order to introduce our methodology, we are going to
study the following problem. We consider a spectral band
An over which: (1) the Planck function is constant (we thus
restrict here our approach to narrow band models), (2) the
absorption coefficient in any thermophysical state takes
strictly positive values (no transparency region of the gas is
inside the interval). We define a reference length that will
be from now on written L'¥ and two thermophysical states.
They are represented as vectors ¢ whose components are
the temperature, total pressure and composition of the gas
associated to each state. One of them will be written ¢,
and will play the role of a reference, and the second one ¢.
Gas spectra are assumed to be scaled (as defined by Modest
in Ref. [3] - see Eq. (30) from this reference) which means
that we can find a real u, that depends implicitly on the
state vectors fgf and ¢ such that
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Our objective is to find u.

Let us assume that the solution u to Eq. (1) lies inside
some bounded interval, [Umin, Umax] With Umax > Umin > 0 (this
obviously restricts the approach to spectral bands over which
the gas is not transparent, as assumed previously). If we have
no a priori information about the solution, then the range
[Umin, Umax] €xtends over several orders of magnitude (due to
the behavior of absorption spectra). Accordingly, we normal-
ize the search space over which we are going to seek u by
introducing a new variable, that will be written ¢&, such that
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In order to introduce the concept of Polynomial Chaos in a
simple way, let us describe how the problem set by Eq. (1)

could be handled by application of a Stochastic Optimization
Technique. Using this kind of methods to solve Eq. (1) would
consist of the following steps [14]:

1. for a prescribed integer number N, choose inside the
interval [0, 1] N random numbers &, ..., &y according to
a uniform probability distribution. Then, the objective
function F(¢) defined as (from Eq. (1))
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can be evaluated to provide N values of F: F(&),
L F@Ey.

2. The next step is usually to search the integer index
ie{1,...,N} that corresponds to the minimum of the
absolute value of F(&), & e {&,....&y}. This index is
associated to the best estimate, inside the set
{&1,...,&x}, of the solution to Eq. (1).

3. If the value of F(¢&;) is lower than a user-defined thresh-
old, then stop the process. Otherwise, apply the evolu-
tionary process associated to the chosen Stochastic
Optimization Technique (by combining/mutating genes
in the case of Genetic Algorithms, or by generating a
direction of propagation for Particle Swarm techniques,
etc) and go back to step 1.

The task of the evolutionary scheme is to decrease, at each
step of the process, the size of the search space. The method is
thus iterative and continues until the algorithm finds a value
F(¢&;) that is below the prescribed threshold, or if a maximum
number of iterations is reached. Clearly, this approach may be
computationally expensive in a general frame.

One possible way to reduce the computational cost
required to minimize function F is to use the set of
estimates obtained at the end of the first iteration, viz.
F(&1),...,F(&y), and approximate the whole function F by
using a surrogate model. The simplest choice to handle
this problem is by fitting the set of data F(&y), ..., F(é&y) by a
polynomial P(¢) at an order M <N. The mathematical
problem then consists in finding the coefficients
{po.P1,-...pm} of the polynomial P(&)=py+p;- &+
--+py - €M that minimize the following sum of squares:
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