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a b s t r a c t

The spherical harmonics (PN) method is a radiative transfer equation solver, which
approximates the radiative intensity as a truncated series of spherical harmonics. For
general 3-D configurations, NðNþ1Þ=2 intensity coefficients must be solved from a system
of coupled second-order elliptic PDEs. In 2-D axisymmetric applications, the number of
equations and intensity coefficients reduces to ðNþ1Þ2=4 if the geometric relations of the
intensity coefficients are taken into account. This paper presents the mathematical details
for the transformation and its implementation on the OpenFOAM finite volume based CFD
software platform. The transformation and implementation are applicable to any arbitrary
axisymmetric geometry, but the examples to test the new formulation are based on a
wedge grid, which is the most common axisymmetric geometry in CFD simulations,
because OpenFOAM and most other platforms do not have true axisymmetric solvers. Two
example problems for the new axisymmetric PN formulation are presented, and the results
are verified with that of the general 3-D PN solver, a Photon Monte Carlo solver and exact
solutions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The study of radiative heat transfer in high-
temperature applications with a strongly varying partici-
pating medium has become increasingly important in
various practical applications like combustion, manufac-
turing and environmental systems. The Radiative Transfer
Equation (RTE) is an integro-differential equation in six
independent variables (3 spatial and 2 directional, and
wavenumber) [1], which is exceedingly difficult to solve.
As a result, approximate solution methods to the RTE, such
as the spherical harmonics method (SHM), discrete ordi-
nates method (DOM), the finite volume method (FVM), or
the Monte Carlo method are frequently employed to solve
radiation problems. Each of these approximate methods

has their well-known advantages and drawbacks. The
SHM offers an approximate solution to the radiative
transfer equation (RTE) by transforming the RTE into a
system of elliptic PDEs. This method approximates the
radiative intensity as a truncated series of spherical har-
monics that decouple the directional and spatial variations
of the intensity field. The SHM has been widely applied to
particle transport problems [2–4], and some of the deriva-
tions for cylindrical geometries have been presented in
[5,6].

For axisymmetric problems, physical quantities such as
temperature, heat flux, radiative intensity, and chemical
species concentrations vary only radially and axially and
are, therefore, two-dimensional. As a result, for many of
these applications, the transport equations are solved on a
2-D or a thin wedge 3-D computational domain in order to
reduce the computational effort. Like the development of
the general PN method [7,8], the application of axisym-
metric formulations of PN method were limited [9,10]
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because of the cumbersome mathematics. Recently, the
general PN (up to P7) equations and boundary conditions
for 3-D geometries have been formulated [11–13] and
solved [14] for various cases including a full cylinder with
variable radiative properties and a real flame.

In this paper, the 2-D axisymmetric version of PN and
its boundary conditions are deduced from the 3-D PN
formulation. The 2-D axisymmetric formulation is imple-
mented in OpenFOAM [15] Cþþ open source libraries.
OpenFOAM provides the mesh generator, the numerical
PDE solvers and the input/output handlers for the example
problems shown in this paper. It also includes various CFD
calculation modules, which the radiation module can be
directly coupled with. Like other modern CFD codes,
OpenFOAM uses the finite-volume method with unstruc-
tured mesh topology. A wedge is the most common way to
represent an axisymmetric full cylinder in the finite-
volume CFD simulation. Thus, the 2-D axisymmetric
example cases in this paper are based on a 3-D finite-
volume wedge. Demonstration problems presented here
are the 3-D wedge versions of axisymmetric cases pre-
sented in [14]. The results of high-order PN are found to be
very close to the exact solution of the RTE, and the results
are also verified against those of the 3-D PN solver.

2. Formulation

Axisymmetric conditions: The radiative transfer
equation (RTE) is an integro-differential equation with
spatial and directional dependence [1],

ŝ �∇τ Iþ I¼ 1�ωð ÞIbþ
ω
4π

Z
4π
I ŝ 0
� �

Φ ŝ � ŝ 0� �
dΩ0 ð1Þ

where τ ¼ R
βr dr is an optical coordinate, and βr is the

radiative extinction coefficient; Ib is the blackbody radia-
tive intensity (Planck function); and ω is the scattering
albedo. The PN approximation is based on approximating
the radiative intensity field Iðτ; ŝÞ as a series of products of
intensity coefficients In

m
and spherical harmonics Yn

m
,

whereby the spatial and the directional (ŝ) dependencies
are decoupled:

Iðτ; ŝÞ ¼
XN
n ¼ 0

Xn
m ¼ �n

Imn ðτÞYm
n ðŝÞ ð2Þ

Spherical harmonics satisfy Laplace's equation in spherical
coordinates and are defined here as

Ym
n ¼

cos ðmψ ÞPm
n ð cosθÞ for mZ0

sin ðjmjψ ÞPm
n ð cosθÞ for mo0

(
ð3Þ

and Pm
n ð cosθÞ are associated Legendre polynomials. The

position-dependent intensity coefficients Imn ðτÞ are deter-
mined by applying the series approximation to the RTE.

The radiative intensity depends on position rðr;ϕ; zÞ
and direction ŝðθ;ψ Þ where θ is the polar angle (measured
from the z-axis), and ψ is the azimuthal angle (measured
counter-clockwise from the x-axis). If the physical system
is axisymmetric, then the radiative intensity varies radially
with r and axially with z, but not azimuthally with ϕ. Fig. 1
illustrates several location–direction combinations, which
have identical intensities for axisymmetric conditions. At a

fixed location rðr;ϕ1; zÞ the radiative intensity in the
direction ŝðθ;ψþϕ1Þ is equal to the radiative intensity at
some other location rðr;ϕ2; zÞ in the direction ŝðθ;ψþϕ2Þ,
which has the same deflection angle relative to its position
vector r. One may conclude from Fig. 1 that

Iðr;ϕ; z;θ;ψþϕÞ ¼ Iðr;0; z;θ;ψ Þ ð4Þ
for any ϕ, as long as the problem is axisymmetric. When
ϕ¼0, the radiative intensity is evaluated along the x-axis.
Considering the general case at some arbitrary ϕ and a
reference case when ϕ¼0, the radiative intensity as
approximated by the spherical harmonic series expansion
equation (2) yields, for a given n, the equality
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nðθÞþ

Xn
m ¼ 1

Imn ðr;ϕ; zÞ½ cosmψ cosmϕ

� sinmψ sinmϕ�Pm
n ðθÞ

þ
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I�m
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¼ I0nðr;0; zÞP0
nðθÞþ

Xn
m ¼ 1

Imn ðr;0; zÞ cosmψPm
n ðθÞ

þ
Xn
m ¼ 1

I�m
n ðr;0; zÞ sinmψPm
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By comparing the In
0
terms, it follows that for m¼0

I0nðr;ϕ; zÞ ¼ I0nðr;0; zÞ ð6Þ
which implies that the intensity coefficients with m¼0
must be functions of r and z only and are thus axisym-
metric. Now comparing other like terms, cosmψPm

n ð cosθÞ
and sinmψPm

n ð cosθÞ in Eq. (5), yields the following rela-
tions for intensity coefficients with m40:

Imn ðr;0; zÞ ¼ Imn ðr;ϕ; zÞ cosmϕþ I�m
n ðr;ϕ; zÞ sinmϕ ð7aÞ

I�m
n ðr;0; zÞ ¼ � Imn ðr;ϕ; zÞ sinmϕþ I�m

n ðr;ϕ; zÞ cosmϕ ð7bÞ
Inverting these relations to express Imn ðr;ϕ; zÞ and
I�m
n ðr;ϕ; zÞ in terms of the Imn ðr;0; zÞ and I�m

n ðr;0; zÞ gives
Imn ðr;ϕ; zÞ ¼ Imn ðr;0; zÞ cosmϕ� I�m

n ðr;0; zÞ sinmϕ ð8aÞ

I�m
n ðr;ϕ; zÞ ¼ Imn ðr;0; zÞ sinmϕþ I�m

n ðr;0; zÞ cosmϕ ð8bÞ
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Fig. 1. Illustration of the invariance of intensity with respect to azimuthal
angle ψ at different locations for axisymmetric conditions.
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