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a b s t r a c t

We describe a simple yet efficient numerical algorithm for computing polarized bidirec-
tional reflectance of an optically thick (semi-infinite), macroscopically flat layer composed
of statistically isotropic and mirror symmetric random particles. The spatial distribution of
the particles is assumed to be sparse, random, and statistically uniform. The 4�4 Stokes
reflection matrix is calculated by iterating the Ambartsumian’s vector nonlinear integral
equation. The result is a numerically exact solution of the vector radiative transfer
equation and as such fully satisfies the energy conservation law and the fundamental
reciprocity relation. Since this technique bypasses the computation of the internal
radiation field, it is very fast and highly accurate. The FORTRAN implementation of the
technique is publicly available on the World Wide Web at http://www.giss.nasa.gov/staff/
mmishchenko/brf. It can be combined with several existing computer programs providing
the requisite single-scattering properties of spherical or morphologically complex parti-
cles and applied to a wide range of optical characterization problems. Benchmark results
obtained with this program can be used for testing alternative solvers of the vector
radiative transfer equation.

Published by Elsevier Ltd.

1. Introduction

In a 1999 paper [1], we described an efficient numerical
solution of the Ambartsumian’s nonlinear integral equa-
tion satisfied by the reflection function of an optically
semi-infinite, homogeneous layer of sparse discrete ran-
dom medium. The corresponding FORTRAN implementa-
tion of this solution [2] has been used extensively by the

research community to compute the bidirectional reflec-
tion function of optically thick particulate layers. The
obvious limitation of the computer program [2] is its
reliance on the scalar approximation [3] and the resulting
inability to compute the polarized bidirectional reflection
function. Therefore, the main objective of this paper is to
describe in detail a natural extension of Ref. [1] wherein
the scalar nonlinear integral equation is replaced by its full
vector version as well as to serve as a step-by-step user
guide to the corresponding computer programs. While the
amount of new science in this user guide (similar in style
to Refs. [4–11]) is by definition limited, the development of
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a numerical algorithm that is both straightforward, user-
friendly, and robust is always non-trivial and deserves a
thorough discussion. We expect that the resulting compu-
ter programs [2] will be used both as an efficient analysis
tool and as a source of benchmark numerical results
suitable for testing alternative computer solvers of the
vector radiative transfer equation.

To make the discussion in this paper more compact, we
will use throughout the terminology and notation adopted
in the monographs [3,12,13]. Note that Refs. [3,12] are
available on-line as PDF files at http://www.giss.nasa.gov/
staff/mmishchenko/books.html as well as at https://www.
researchgate.net/profile/Michael_Mishchenko.

2. Vector nonlinear integral equation

Let us consider a semi-infinite, plane-parallel, statistically
uniform layer of sparse discrete random medium extending
in the vertical direction from z¼ 0 to z¼ �1, where the
z-axis of the laboratory right-handed coordinate system is
perpendicular to the boundary of the medium and is
directed upwards (Fig. 1). This implies that the particles
constituting the layer are imbedded only in the lower half of
the infinite homogeneous host medium. The host medium is
assumed to be nonabsorbing.

A propagation direction n̂ at a point in space will be
specified by a couplet fu;φg; where u¼ � cos θA ½�1; þ1�
is the direction cosine, while θ and φ are the corresponding
polar and azimuth angles with respect to the local coordinate
system having the same spatial orientation as the laboratory
coordinate system (Fig. 1). As usual, the polar (zenith) angle
θ A ½0;π� is measured from the positive z-axis and the
azimuth angle φA ½0;2πÞ is measured from the positive x-
axis in the clockwise direction when looking in the direction
of the positive z-axis. A positive u always corresponds to a

downward direction, whereas a negative u always corre-
sponds to an upward direction. It is also convenient to
introduce a nonnegative quantity μ¼ j u jA ½0;1�:

The random particulate layer is illuminated from above
by a plane electromagnetic wave or a parallel quasi-
monochromatic beam of light propagating in the direction
n̂0 ¼ fu0;φ0g ¼ fμ0;φ0g. The uniformity and infinite trans-
verse extent of the wave or the beam combined with the
statistical uniformity of the particulate layer ensure that all
parameters of the diffuse radiation field are independent
of the coordinates x and y.

We assume the expð� iωtÞ time-harmonic dependence
of the electromagnetic field, where t is the time, ω is the
angular frequency, and i¼ ð�1Þ1=2: This assumption implies
a non-negative imaginary part of the particle relative
refractive index. In accordance with Refs. [3,12,13], the
four-component Stokes column vector of the incident light
is defined as
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where ε1 is the real-valued electric permittivity of the
infinite host medium; μ0 is the permeability of a vacuum
(not to be confused with the direction cosine μ0 ¼ u0); 〈〈⋯〉〉

denotes averaging over a “sufficiently long” period of time;
E0θ and E0φ are the θ- and φ-components of the electric
field vector, respectively; and the asterisk denotes a
complex-conjugate value. Note that the longitudinal com-
ponent of the incident electric field is equal to zero since
the electromagnetic field of the incident light is transverse.
The same conventions as in Eq. (1) are used to define the
4-component diffuse specific intensity column vector
~Idðz; n̂Þ ¼ ~Idðz;u;φÞ. The dimension of I0 is wm–2, while that
of ~Id is wm–2 sr–1.

We assume that the random particles forming the
scattering layer are statistically isotropic and mirror sym-
metric [3,13]. This allows one to fully characterize the
optical properties of the particulate layer by the ensemble-
averaged single-scattering albedoϖ and so-called normal-
ized 4� 4 Stokes scattering matrix ~FðΘÞ with real-valued
components. The latter has the well-known block-diagonal
structure:

~FðΘÞ ¼

a1ðΘÞ b1ðΘÞ 0 0
b1ðΘÞ a2ðΘÞ 0 0
0 0 a3ðΘÞ b2ðΘÞ
0 0 �b2ðΘÞ a4ðΘÞ

2
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3
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where ΘA ½0;π� is the angle between the incidence and
scattering directions (i.e., the scattering angle). The (1,1)
element (often called the phase function) is non-negative
and satisfies the normalization condition:

1
2

Z π
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The assumption of low packing density of the particles
forming the scattering slab allows one to compute the
diffuse specific intensity column vector ~Idðz; n̂Þ by solving
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Fig. 1. Spherical coordinates used to specify the direction of light
propagation.

M.I. Mishchenko et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 156 (2015) 97–10898

http://www.giss.nasa.gov/staff/mmishchenko/books.html
http://www.giss.nasa.gov/staff/mmishchenko/books.html
https://www.researchgate.net/profile/Michael_Mishchenko
https://www.researchgate.net/profile/Michael_Mishchenko


Download English Version:

https://daneshyari.com/en/article/5428004

Download Persian Version:

https://daneshyari.com/article/5428004

Daneshyari.com

https://daneshyari.com/en/article/5428004
https://daneshyari.com/article/5428004
https://daneshyari.com

