Shape optimization of radiant enclosures with specular-diffuse surfaces by means of a random search and gradient minimization

Sergey A. Rukolaine ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Ioffe Institute, 26 Polytekhnicheskaya, St. Petersburg 194021, Russia
${ }^{\text {b }}$ St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya, St. Petersburg 195251, Russia

A RTICLE INFO

Article history:

Received 22 February 2014
Received in revised form 2 September 2014
Accepted 9 September 2014
Available online 21 September 2014

Keywords:

Radiative heat transfer
Shape optimization
Random search
Shape sensitivity analysis
Shape gradient
Adjoint problem

Abstract

A technique of the shape optimization of radiant enclosures with specular-diffuse surfaces is proposed. The shape optimization problem is formulated as an operator equation of the first kind with respect to a surface to be optimized. The operator equation is reduced to a minimization problem for a least-squares objective shape functional. The minimization problem is solved by a combination of the pure random (or blind) search (the simplest stochastic minimization method) and the conjugate gradient method. The random search is used to find a starting point for the gradient method. The latter needs the gradient of the objective functional. The shape gradient of the objective functional is derived by means of the shape sensitivity analysis and the adjoint problem method. Eventually, the shape gradient is obtained as a result of solving the direct and adjoint problems. If a surface to be optimized is given by a finite number of parameters, then the objective functional becomes a function in a finite-dimensional space and the shape gradient becomes an ordinary gradient. Numerical examples of the shape optimization of "twodimensional" radiant enclosures with polyhedral specular or specular-diffuse surfaces are given.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal radiation plays decisive role in many hightemperature setups and systems, such as infrared thermal chambers, furnaces and ovens for materials processing and manufacturing, radiant heaters and reflectors, and solar collectors. Enclosure geometry significantly influences radiative heat transfer. Therefore, the shape optimization of radiant enclosures is of fundamental importance.

Geometric (shape) optimization of radiant enclosures was considered in Refs. [1-5], where two-dimensional

[^0]problems were considered and design problems were reduced to minimization of least-squares objective functions. In Ref. [1] optimal boundary-value and shape design problems were considered. Design parameters were positions of three tube radiators in radiant heaters and uniform radiative heat fluxes on the surfaces of the radiators. Design objective was a uniform radiative heat flux on a design surface. The radiant heaters were considered both with a reflector and without it. The minimization problems were solved by a modification of the Nelder-Mead simplex method. In Refs. [2,3] geometric optimization of radiant enclosures with transparent medium was considered. In Ref. [2] surfaces of the enclosure were diffuse, while in Ref. [3] the enclosures contained plane specular surfaces. Surfaces to be optimized were described parametrically by few parameters. Objective functions were

Nomenclature		θ	polar angle				
		κ	absorption coefficient				
A	operator of the direct problem (Eq. (3.1),	ρ	surface reflectivity ($\rho \equiv \rho(\mathbf{r}), \mathbf{r} \in S$)				
	Fig. 2)	ϕ	azimuthal angle				
A^{\prime}	derivative of A with respect to variations of S_{0} (see Eq. (4.9)), the operator $A^{\prime}\left(S_{0}\right)$ is deter-	$\boldsymbol{\varphi}_{t}$	mapping, defining a perturbation of the domain D (Eq. (4.4))				
	mined by the sensitivity problem	χ	vector field, $\chi \equiv \chi(\mathbf{r}, \boldsymbol{\Omega})$, Eqs. (B.4) or (B.7),				
D	domain in \mathbb{R}^{3}		(B.8) and (B.11)				
D_{t}	perturbed domain ($D_{t}=\boldsymbol{\varphi}_{t}(D)$)	Ψ	direction ($\Psi \in \mathbb{S}^{2}$)				
$\mathrm{d} \mathbf{r}$	volume integration	$\boldsymbol{\psi}_{t}$	inverse mapping ($\boldsymbol{\psi}_{t}=\boldsymbol{\varphi}_{t}^{-1}$)				
ds	surface integration	$\boldsymbol{\Omega}$	direction $\quad\left(\boldsymbol{\Omega} \in \mathbb{S}^{2}\right.$,				
$\mathrm{d} \boldsymbol{\Omega}$	integration on the unit sphere, i.e., $\mathrm{d} \boldsymbol{\Omega}=\sin \theta \mathrm{d} \theta \mathrm{d} \phi$	$\boldsymbol{\Omega}$	$\boldsymbol{\Omega}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta))$ direction of incident radiation to be reflected				
I	radiation intensity ($I \equiv I(\mathbf{r}, \boldsymbol{\Omega}$) $)$		into $\boldsymbol{\Omega}$ at the point \mathbf{r} of the surface S				
$I_{\text {b,s }}$	black-body intensity on a surface ($I_{\mathrm{b}, \mathrm{s}} \equiv I_{\mathrm{b}, \mathrm{s}}(\mathbf{r})$)		($\boldsymbol{\Omega} \equiv \boldsymbol{\Omega}(\mathbf{r})$, Eq. (2.3), Fig. 1)				
I_{t}	solution to the direct problem in D_{t} $\left(I_{t} \equiv I_{t}(\tilde{\mathbf{r}}, \boldsymbol{\Omega}), \tilde{\mathbf{r}} \in D_{t}\right)$	$\boldsymbol{\Omega}_{t}$	direction of incident radiation to be reflected into $\boldsymbol{\Omega}$ at the point $\tilde{\mathbf{r}}$ of the surface S_{t}				
I^{t}	$I^{t} \equiv I^{t}(\mathbf{r}, \boldsymbol{\Omega})=I_{t}\left(\boldsymbol{\varphi}_{t}(\mathbf{r}), \boldsymbol{\Omega}\right), \mathbf{r} \in D$ (see the caption of Fig. 3)	$\hat{\boldsymbol{\Omega}}^{\prime}$	$\begin{aligned} & \left(\hat{\boldsymbol{\Omega}}_{t} \equiv \hat{\boldsymbol{\Omega}}_{t}(\tilde{\mathbf{r}}),\right. \text { Eq. (A.6), Fig. 19) } \\ & \left.\hat{\boldsymbol{\Omega}}^{\prime} \equiv \hat{\boldsymbol{\Omega}}^{(\mathbf{r}}\right)=\left.(\mathrm{d} / \mathrm{d} t) \hat{\boldsymbol{\Omega}}_{t}\right\|_{t=0+} \text { (Eq. (A.9), Fig. 19) } \end{aligned}$				
I^{\prime}	shape derivative of I (Eq. (4.8))	Ω_{n}	$\Omega_{\mathrm{n}}=\boldsymbol{\Omega} \cdot \mathbf{n}, \Omega_{\tilde{\mathrm{n}}}=\boldsymbol{\Omega} \cdot \tilde{\mathbf{n}}, \Omega_{\mathrm{n}_{t}}=\boldsymbol{\Omega} \cdot \mathbf{n}_{t}$				
\dot{I}	material derivative of I (Eq. (4.12))	ω	$\omega \equiv \omega(\mathbf{r}, \boldsymbol{\Omega})$, Eq. (A.11)				
r^{*}	"adjoint intensity", solution to the adjoint problem (C.11) and (C.12) ($I^{*} \equiv I^{*}(\mathbf{r}, \boldsymbol{\Omega})$)	Other symbols					
J	objective functional (Eq. (3.4))						
J^{\prime}	shape gradient of J (Eq. (4.11))	$\operatorname{div}_{\tau}$	tangential divergence (Eq. (D.3))				
\hat{J}	"finite-parametric" objective functional (Eq. (5.2))	∇	gradient with respect to the space variables, i . e., $\nabla=(\partial / \partial x \partial / \partial y \partial / \partial z)^{T}$, if $\mathbf{r}=(x, y, z)$				
J.	Jacobian matrix, e.g., $\mathbf{J}_{\varphi_{t}}, \mathbf{J}_{\psi_{t}}, \mathbf{J}_{\mathbf{V}}$	∇_{τ}	tangential gradient (Eq. (D.1))				
(J... $)_{\tau}$	tangential Jacobian matrix, e.g., $\left.\left(\mathbf{J}_{\mathbf{v}}\right)_{\tau}, \mathbf{J}_{\mathbf{n}}\right)_{\tau},\left(\mathbf{J}_{\mathbf{g}}\right)_{\tau}$ (Eq. (D.5))	$\nabla_{\mathbf{\Omega}} I$	gradient of the intensity with respect to $\boldsymbol{\Omega}$, angular gradient (Eq. (A.10))				
n	outward unit normal to a surface ($\mathbf{n} \equiv \mathbf{n}(\mathbf{r})$)	\mathbb{R}^{n}	n-dimensional Euclidean space				
$\tilde{\mathbf{n}}, \mathbf{n}_{t}$	outward unit normal to the surface S_{t} $\left(\tilde{\mathbf{n}} \equiv \mathbf{n}(\tilde{\mathbf{r}}), \mathbf{n}_{t} \equiv \mathbf{n}_{t}(\mathbf{r})=\mathbf{n}\left(\boldsymbol{\varphi}_{t}(\mathbf{r})\right)\right.$, Fig. 19)	S^{2}	unit sphere in \mathbb{R}^{3}				
\mathbf{n}^{\prime}	$\begin{aligned} & \left.\mathbf{n}^{\prime} \equiv \mathbf{n}^{\prime}(\mathbf{r}) \stackrel{\text { def }}{=}(\mathrm{d} / \mathrm{d} t) \mathbf{n}_{t}\right\|_{t=0+} \text { (Eq. (A.8), Fig. 19), } \\ & \text { note that } \mathbf{n}^{\prime} \cdot \mathbf{n}=0 \end{aligned}$	Subsc					
p	parameters, determining a surface to be opti$\operatorname{mized}\left(\mathbf{p}=\left(p_{1}, \ldots, p_{m}\right)\right)$		black-body				
q	radiative heat flux ($q \equiv q(\mathbf{r}$), $\mathbf{r} \in S$)		design surface $\left(S_{\mathrm{d}}\right)$ or diffuse (ρ_{d})				
$q_{\mathrm{b}, \mathrm{s}}$	black-body flux on a surface	h	heater				
$\bar{q}_{\text {d }}^{\text {inc }}$	$\left(q_{\mathrm{b}, \mathrm{~s}} \equiv q_{\mathrm{b}, \mathrm{~s}}(\mathbf{r})=\pi I_{\mathrm{b}, \mathrm{~s}}(\mathbf{r})\right)$ radiative heat flux, specified on the design surface $\left(\bar{q}_{d}^{\mathrm{inc}} \equiv \bar{q}_{\mathrm{d}}^{\mathrm{inc}}(\mathbf{r})\right.$)	n	the normal component of a vector, e.g., $v_{\mathrm{n}}=\mathbf{v} \cdot \mathbf{n}, \Omega_{\mathrm{n}}=\boldsymbol{\Omega} \cdot \mathbf{n}$				
$q^{\text {t, inc }}$	incident flux, corresponding to I^{t} (Eq. (A.7))	o	the				
$\dot{q}^{\text {inc }}$	incident flux, corresponding to \dot{I} (Eq. (A.12))	τ	$\begin{aligned} & \text { the tangential component of a vector, e.g., } \\ & \mathbf{v}_{\tau}=\mathbf{v}-v_{\mathrm{n}} \mathbf{n}, \boldsymbol{\Omega}_{\tau}=\boldsymbol{\Omega}-\boldsymbol{\Omega}_{\mathrm{n}} \mathbf{n} \text { (Fig. 19) } \end{aligned}$				
$q^{\prime, \text { inc }}$	incident flux, corresponding to I^{\prime} (Eq. (4.7))	S	surface ($I_{\mathrm{b}, \mathrm{s}}, q_{\mathrm{b}, \mathrm{s}}$) or specular (ρ_{s})				
$q^{*, \text { inc }}$	incident flux, corresponding to Γ^{*} (Eq. (C.13))						
$q^{*, \text {,out }}$	see Eq. (C.5)	Superscripts					
\mathbf{r}	point in D						
$\tilde{\mathbf{r}}$	point in D_{t}	inc					
S	surface, boundary of D		incident radiation				
S_{t}	perturbed surface, boundary of $D_{t}\left(S_{t}=\boldsymbol{\varphi}_{t}(S)\right)$		outgoing radiation (radiosity)				
,	parameter of the transformation $\boldsymbol{\varphi}_{t}$		matrix transposition				
\mathbf{u}_{0}	vector field (Eqs. (C.14)-(C.16))	*					
v	velocity field ($\mathbf{v} \equiv \mathbf{v}(\mathbf{r})$, Eq. (4.4))						
$\mathrm{v}_{\text {o }}$	$\left.\mathbf{v}_{0} \equiv \mathbf{v}\right\|_{S_{0}}$	Inner products and norms					
Greek symbols		\| $\cdot 1$	the Euclidean norm (length) $(\|\mathbf{x}\|=\sqrt{\mathbf{X} \cdot \mathbf{x}})$				
		$\langle\cdot, \cdot\rangle_{S_{d}}$	$\langle u, v\rangle_{S_{\mathrm{d}}}=\int_{S_{\mathrm{d}}} u v \mathrm{ds}$				
$\boldsymbol{\alpha}$$\varepsilon$$\eta$	$\boldsymbol{\alpha}(\mathbf{r})=\int_{\Omega_{\mathrm{n}}>0} \boldsymbol{\Omega}_{\tau} I(\mathbf{r}, \boldsymbol{\Omega}) \mathrm{d} \boldsymbol{\Omega}, \mathbf{r} \in S$ (Eq. (A.13))	$\\|\cdot\\| s_{\text {d }}$	$\\|u\\|_{S_{\mathrm{d}}}^{2}=\int_{S_{\mathrm{d}}}\|u\|^{2} \mathrm{~d} s$				
	surface emissivity ($\varepsilon \equiv \varepsilon(\mathbf{r}), \mathbf{r} \in S$)test function (Eq. $(\mathrm{A} .3), \eta \equiv \eta(\mathbf{r}, \boldsymbol{\Omega})$)	$\langle\cdot, \cdot\rangle_{S_{0}}$	$\langle\mathbf{u}, \mathbf{v}\rangle_{S_{0}}=\int_{S_{0}} \mathbf{u} \cdot \mathbf{v} \mathrm{~d} s$				

https://daneshyari.com/en/article/5428153

Download Persian Version:
https://daneshyari.com/article/5428153

Daneshyari.com

[^0]: * Correspondence address: Ioffe Institute, 26 Polytekhnicheskaya, St. Petersburg 194021, Russia.

 E-mail address: rukol@ammp.ioffe.ru

