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a b s t r a c t

A method to retrieve characteristics of ordered particulate structures, such as photonic
crystals, is proposed. It is based on the solution of the inverse problem using data on the
photonic band gap (PBG). The quasicrystalline approximation (QCA) of the theory of
multiple scattering of waves and the transfer matrix method (TMM) are used. Retrieval of
the refractive index of particles is demonstrated. Refractive indices of the artificial opal
particles are estimated using the published experimental data.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Ordered photonic structures, such as photonic crystals
(PC), are the subject of intensive investigations in the last
decades [1–12]. The interest is caused by the unique
feature of such structures to suppress light propagation
in some spectral ranges known as photonic band gaps
(PBGs) [1–3]. This phenomenon is caused by interference
of waves interacted with the ordered structures.

The depth, width and spectral position of the PBG depend
on characteristics of the structure. That can be used to find
(retrieve) the structure parameters. The retrieval problem is
known as an inverse problem [13–22]. Its solution can be
based, for example, on the known solution to the respective
direct problem, i.e. on the known characteristics of outgoing
light. The retrieval can be performed by multiple solution
of the direct problem at different values of parameter to be

found and comparison of the calculated and experimental
PBG data.

In this work we consider the inverse problem for a three-
dimensional (3D) ordered particulate structure (photonic
crystal). We develop a method to retrieve characteristics of
a structure by the known PBG data. The refractive index
retrieval is considered as an example.

2. Basic approaches

We consider three-dimensional ordered particulate
structure consisting of monodisperse spherical particles
as a stack of the ordered plane-parallel monolayers of
particles. To solve the direct problem we use the quasi-
crystalline approximation (QCA) [23,24] of the theory of
multiple scattering of waves [23–25] and the transfer
matrix method (TMM) [26–28]. First, we calculate the
amplitude coherent transmission and reflection coeffi-
cients of individual monolayers in the QCA. Using these
coefficients, we next calculate coherent transmittance and
reflectance of the multilayer under the TMM.
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2.1. Spatially ordered monolayer of particles

Let us consider a spatially ordered monolayer of mono-
disperse spherical particles with known parameters, such
as refractive index, size, and concentration of particles,
type and degree of their spatial ordering. Let it be normally
illuminated by a plane wave and situated in a medium
with a known spectral refractive index. We use the
quasicrystalline approximation of the statistical theory of
multiple scattering of waves to find the coherent transmis-
sion and coherent reflection coefficients of the monolayer.
This approximation is based on the assumption that the
mean (coherent) field at one fixed particle equals the field
at two fixed particles [24]. The spatial correlation of
particles is taken into account by the radial distribution
function (RDF) [29,30], which characterizes the probability
of finding a particle in a certain position relative to
another one.

There is a number of methods to calculate the RDFs of
short-range ordered monolayers (partially ordered mono-
layers) [31–35]. Nevertheless it is a challenge to find the
RDFs for long-range ordered monolayers (for example,
planar photonic crystals). Besides, these functions should
be adapted for the QCA.

We showed that the expression for calculating the RDF
g(u) of an actual planar photonic crystal (monolayer with
long-range order) can be written as [10,11]

gðuÞ ¼ ρ�1
0 ∑
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1ffiffiffiffiffiffi
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Here σ(u) is a function that characterizes the coordination
circles “blurring” (broadening) with the distance u. It is
reasonable to use the linear blurring function:

σðuÞ ¼ σ0 auþbð Þ: ð2Þ

In Eqs. (1) and (2) u¼R/D stands for the dimensionless
distance expressed in diameters D of the particles (uZ1);
R is the distance in a monolayer plane (plane, where the
particle centers are located) relative to the origin; ρ0 is the
averaged numerical particle concentration in the mono-
layer; Ni is the number of particle centers on the coordina-
tion circle with radius Ri in an ideal lattice; σ0 is the
dimensionless initial dispersion of coordination circles
radii (expressed in particle diameters); and a and b are
the coefficients. The ordering degree and the scale of the
spatial order of the simulated crystal are specified by σ0,
and by a and b coefficients, respectively. Eq. (2) takes into
account asymmetry of the individual peaks of the RDFs
observed experimentally. It enables one to calculate RDFs
of crystals in a wide range of ordering. The RDFs [Eq. (1)]
obtained with Eq. (2) are well adapted for the QCA.
Calculation of such RDFs and, consequently, coherent
transmission and reflection coefficients of the monolayer
with long-range order in the QCA is fast and requires low
amount of computational resources.

At small distances from the coordinate origin, the RDF
of highly ordered PC is a sequence of sharp peaks. For
example, in Fig. 1c is shown such RDF describing the PC
with triangular lattice (Fig. 1a,b). With distance increasing,
the peaks become wider, the function oscillates and

converges to unity. Note that for σ(u)¼const, expression
(1) is transformed into the known one, which describes
the Gaussian blurring of the coordination circles [30].
Function (1) describes imperfect lattices with different
degree of imperfection, which is specified by function (2)
and consists in the deviations of particle centers from the
points of perfect lattice (other defects are not considered
in this model).

Using the described RDF allows one to calculate in the
QCA coherent transmission Tc and coherent reflection Rc
coefficients [23–25,34], which describe direct transmission
and specular reflection, of monolayers with imperfect
lattices. The detail consideration of the lattice geometry
and ordering degree effects on the coherent transmittance
and reflectance spectra is made in our previous works
[10,11].

Compare the results for coherent reflection coefficient Rc
obtained by our approach described in [10,11] with the
results for total reflection coefficient ℜ (reflectivity) calcu-
lated by the method based on the low energy electron
diffraction (LEED) theory developed for perfect lattices
[36–38]. Fig. 1d shows the QCA-calculations of spectral
coherent reflection coefficient Rc and of sum TcþRc (Tc is the
spectral coherent transmission coefficient) for a monolayer
with a triangular lattice (see Fig. 1a,b), which is close to the
perfect one. Concentration of particles is characterized by
filling coefficient η, i.e. by the surface fraction of particles in
the monolayer. The calculations were fulfilled at η¼0.9. The
results published in [38] for monolayer with perfect triangular
lattice with maximum filling coefficient η¼ηmax¼π/(2√3)E
0.9069 (see Fig. 2 of [38]) are displayed as well.

Fig. 1d illustrates that our calculations coincide with
data of [38] at ωo1 (ω¼

ffiffiffi
3

p
at=ð2λÞ, where at is the

triangular lattice constant, λ is the wavelength of incident
light), except for narrow resonance peaks. The agreement
is caused by existence of only coherent components of
light: direct transmission and specular reflection. The
value of TcþRc is unity (see Fig. 1d). In this ω-range only
zero diffraction order exists.

At ωZ1 the incoherent components (nondirect light)
[23–25,34] are appeared. The 1�(TcþRc) values character-
ize the fraction of such light. The difference in the Rc andℜ
characterizes the fraction of higher diffraction orders.
Although as a whole for ωZ1 coherent reflection is less
than reflectivity, in the ranges of peaks Rc can be larger
than ℜ (see, for example, calculation results in the vicinity
of ω¼1.35). The possible reason can be that the QCA does
not consider the near field effects [23,24]. They can make
contribution to the resulting coherent component of the
transmitted and reflected waves at a high concentration of
particles. Fig. 1d shows the maximum intensity of the near
field |E|2max(ω) at distance of D/2 (particle radius) from the
monolayer plane obtained in [38] (see dotted line linked
with right axis).

The calculations by the both methods show sharp
resonance peaks in the spectra of regularly packed mono-
layers (see Fig. 1). As shown in [38], they coincide with the
peaks of the near field that are predominantly caused by
the evanescent waves. Note that the QCA results and
results of [38] agree well with respect to peak positions
at 1oωo1.5, although the QCA itself does not consider
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