
Optimized FPGA-based elliptic curve cryptography processor for
high-speed applications

Kimmo Järvinen 1

Aalto University, School of Science and Technology, Department of Information and Computer Science, P.O. Box 15400, FIN-00076 Aalto, Finland

a r t i c l e i n f o

Available online 1 September 2010

Keywords:

Elliptic curve cryptography

Field-programmable gate arrays

Koblitz curve

Parallelism

a b s t r a c t

In this paper, we introduce an FPGA-based processor for elliptic curve cryptography on Koblitz curves.

The processor targets specifically to applications requiring very high speed. The processor is optimized

for performing scalar multiplications, which are the basic operations of every elliptic curve

cryptosystem, only on one specific Koblitz curve; the support for other curves is achieved by

reconfiguring the FPGA. We combine efficient methods from various recent papers into a very efficient

processor architecture. The processor includes carefully designed processing units dedicated for

different parts of the scalar multiplication in order to increase performance. The computation is

pipelined providing simultaneous processing of up to three scalar multiplications. We provide

experimental results on an Altera Stratix II FPGA demonstrating that the processor computes a single

scalar multiplication on average in 11:71ms and achieves a throughput of 235,550 scalar multiplications

per second on NIST K-163.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Neal Koblitz and Victor Miller independently proposed the use
of elliptic curves for public-key cryptography in 1985 [1,2]. Since
then, elliptic curve cryptography (ECC) has been intensively
studied because it offers both shorter keys [3] and faster
performance [4,5] compared to more traditional public-key
cryptosystems, such as RSA [6]. Hardware implementation of
ECC has also gained considerable interest and, as a consequence,
many descriptions of hardware implementations exist in the
literature; see [7] for a comprehensive review.

Field-programmable gate arrays (FPGAs) have proven to be
highly feasible platforms for implementing cryptographic algo-
rithms because of the combination of programmability and high
speed. Several advantages of FPGAs in cryptographic applications
were listed in [8]. One of the advantages was entitled
‘‘Architecture efficiency’’, of which they stated,

In certain cases a hardware architecture can be much more
efficient if it is designed for a specific set of parameters.
Parameters for cryptographic algorithms can be, for example,
the key, the underlying finite field, the coefficient used (e.g.,
the specific curve of an ECC system), and so on. Generally
speaking, the more specific an algorithm is implemented the
more efficient it can become.

In an FPGA, optimizations for specific parameters can be
done without major restrictions in the generality of a system
because, if other parameters are needed, the FPGA can be
reprogrammed to implement the new parameters [8]. This fact
has been exploited in numerous papers describing FPGA-based
implementations of ECC [7]. However, a vast majority of
papers optimize only field arithmetic units for one specific field
while the higher abstraction levels of ECC still remain unopti-
mized and use more generic architectures. This approach seems
rather pointless because fixing the underlying field already
restricts the number of usable elliptic curves to very few. For
instance, fixing the field to F2163 means that from the total of 15
curves recommended by the U.S. National Institute of Standards
and Technology (NIST) in [9] only two curves, namely B-163 and
K-163, could be used. Hence, if the field is fixed in order to
increase performance, one should optimize the architecture also
on higher levels for a specific curve. In this paper, we describe an
FPGA-based processor that is optimized specifically for Koblitz
curves [10].

1.1. Related work

The first FPGA-based implementation using Koblitz curves was
presented in [11], where one scalar multiplication was shown to
require 45.6 ms on the NIST K-163 curve with an Altera Flex 10K
FPGA. They concluded that Koblitz curves are approximately
twice as fast as general curves. Ref. [12] presented an imple-
mentation which computes scalar multiplication in 75ms on

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

0167-9260/$ - see front matter & 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.vlsi.2010.08.001

E-mail address: kimmo.jarvinen@tkk.fi
1 The author was supported by EU FP7 project CACE.

INTEGRATION, the VLSI journal 44 (2011) 270–279

www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2010.08.001
mailto:kimmo.jarvinen@tkk.fi
dx.doi.org/10.1016/j.vlsi.2010.08.001


NIST K-163 in a Xilinx Virtex-E FPGA. Neither of the two designs
includes a circuitry for conversions that are mandatory for Koblitz
curves (see Section 2.3). Refs. [13,14] proposed a multiple-base
expansion which can be used for increasing the speed of Koblitz
curve computations and presented FPGA implementations for
both elliptic curve scalar multiplication and conversion. Scalar
multiplication was shown to require 35:75ms on NIST K-163 with
a Xilinx Virtex-II whereas the conversion requires 3:81ms in [13].
Ref. [14] presented a parallelized version of the processor of [13]
achieving computation delay of 17:15ms on Stratix II including the
conversion. Ref. [15] presented a high-speed processor using
parallel formulations of scalar multiplication on Koblitz curves.
Their processor achieves a very fast computation delay of 7:22ms
on NIST K-233 with Virtex-II, but it also neglects the mandatory
conversions.

Our recent work considering scalar multiplication on Koblitz
curves in FPGAs consists of [16–18]. It was shown in [18] that up
to 166,000 signature verifications can be computed using a single
Stratix II FPGA with parallel processing. More general paralleliza-
tion studies were presented in [17] and they resulted in an
implementation that computes scalar multiplication in 25:81ms.
Recently, we showed that even shorter computation delay of only
4:91ms (without the conversion) can be achieved on NIST K-163
with interleaved operations [16].

1.2. Contributions of the paper

In this article, we present a processor for ECC that is optimized
for a specific elliptic curve on all levels and, hence, it fully
exploits the architecture efficiency advantage provided by
FPGAs. This work builds on our previous works [16,19–21] and
combines them into a highly efficient processor for computing
scalar multiplications on Koblitz curves. Especially, this paper is
based on [19] which presented a preliminary version of the
processor. This contribution extends it by providing more details
and further optimizations, as well as an adaptation to another
scalar multiplication algorithm. We provide implementation
results on an Altera Stratix II FPGA for NIST K-163 curve [9].
They show that the processor outperforms other implementations
currently available in the literature.

1.3. Structure of the paper

The remaining of the paper is structured as follows. Section 2
presents the preliminaries of finite fields, elliptic curves,
and Koblitz curves. Section 3 introduces algorithms that are
used in the proposed processor. The processor architecture is
described in detail in Section 4. Section 5 discusses certain
properties of the processor and the implementation results
are collected in Section 6. Finally, we conclude the paper in
Section 7.

2. Preliminaries

2.1. Finite fields

Elliptic curves defined over finite fields Fq are used in
cryptography and only curves over binary fields, where
q¼2m, with polynomial basis are considered in this paper.
Polynomial bases are commonly used in elliptic curve
cryptosystems because they provide fast performance on both
software and hardware. Another commonly used basis, normal
basis, provides very efficient squaring but multiplication is more
complicated.

Elements of F2m with polynomial basis are represented as
binary polynomials with degrees less than m as aðxÞ ¼

Pm�1
i ¼ 0 aix

i.
Arithmetic operations in F2m are computed modulo an irreducible
polynomial2 with a degree m. Because sparse polynomials
offer considerable computational advantages, trinomials (three
nonzero terms) or pentanomials (five nonzero terms) are used
in practice. The curve, NIST K-163, considered in this
paper is defined over F2163 with the pentanomial p(x)¼x163+x7+
x6+x3+1 [9].

Addition, a(x)+b(x), in F2m is a bitwise exclusive-or (XOR).
Multiplication, a(x)b(x), is more involved and it consists of
two steps: ordinary multiplication of polynomials and
reduction modulo p(x). If both multiplicands are the same, the
operation is called squaring, a2(x). Squaring is cheaper than
multiplication because the multiplication of polynomials is
performed simply by adding zeros to the bit vector. Reduction
modulo p(x) can be performed with a small number of XORs
if p(x) is sparse and fixed, i.e., the same p(x) is always used, which
is the case in this paper. Repeated squaring denotes several
successive squarings, i.e., exponentiation a2e

ðxÞ. Inversion, a�1(x),
is an operation which finds b(x) such that a(x)b(x)¼1 for a given
a(x). Inversion is the most complex operation and it can be
computed either with the extended Euclidean algorithm or
Fermat’s little theorem (e.g., as suggested in [22]) that gives
a�1ðxÞ ¼ a2m

�2ðxÞ.
Multiplication has the most crucial effect on performance

of an elliptic curve cryptosystem. A digit-serial multiplier
computes D bits of the output in one cycle resulting in a total
latency of dm=De cycles. We use hardware modifications of
the multiplier described in [23]. Instead of using precomputed
look-up tables as in [23], our multiplier computes everything
on-the-fly similarly as in [12]. Repeated squarings can be
computed efficiently with the repeated squarers presented in
[21] which are components that compute a2e

ðxÞ directly in one
clock cycle.

2.2. Elliptic curve scalar multiplication

Let E be an elliptic curve defined over a finite field Fq. Points on
E form an additive Abelian group, EðFqÞ, together with a point
called the point at infinity, O, acting as the zero element. The
group operation is called point addition. Let P1 and P2 be two
points in EðFqÞ. Point addition P1+P2 where P1¼P2 is called point
doubling. In order to avoid confusion, point addition henceforth
refers solely to the case P1a7P2.

The principal operation of elliptic curve cryptosystems is
scalar multiplication kP where k is an integer and PAEðFqÞ

is called the base point. The most straightforward practical
algorithm for scalar multiplication is the double-and-add
algorithm (binary algorithm) where k is represented as a
binary expansion

P‘�1
i ¼ 0 ki2

i with kiAf0,1g. Each bit in the
representation results in a point doubling and an additional
point addition is computed if ki¼1. Let w denote the Hamming
weight of k, i.e., the number of nonzeros in the expansion.
Depending on whether the algorithm starts from the most
significant (k‘�1) or the least significant (k0) bit of the expansion,
the algorithm is called either left-to-right or right-to-left double-
and-add algorithm. They are shown in Algorithms 1 and 2,
respectively. They both have the same costs: ‘�1 point doublings
and w�1 point additions (the first operations are simply
substitutions).

2 A polynomial, f ðxÞAF½x�, with a positive degree is irreducible over F if it

cannot be presented as a product of two polynomials in F½x� with positive degrees.

K. Järvinen / INTEGRATION, the VLSI journal 44 (2011) 270–279 271



Download	English	Version:

https://daneshyari.com/en/article/542817

Download	Persian	Version:

https://daneshyari.com/article/542817

Daneshyari.com

https://daneshyari.com/en/article/542817
https://daneshyari.com/article/542817
https://daneshyari.com/

