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a b s t r a c t

The Synthetic Kernel (SKN) method is employed to a 3D absorbing, emitting and linearly
anisotropically scattering inhomogeneousmedium. Standard SKN approximation is applied only
to the diffusive components of the radiative transfer equations. An alternative SKN (SKn

N)
method is also derived in full 3-D generality by extending the approximation to the direct wall
contributions. Complete sets of boundary conditions for both SKN approaches are rigorously
obtained. The simplified spherical harmonics (P2N�1 or SP2N�1) and simplified double spherical
harmonics (DPN�1 or SDPN�1) equations for linearly anisotropically scattering homogeneous
medium are also derived. Resulting full P2N�1 and DPN�1 (or SP2N�1 and SDPN�1) equations are
cast as diagonalized second order coupled diffusion-like equations. By this analysis, it is shown
that the SKN method is a high-order approximation, and simply by the selection of full or half
range Gauss–Legendre quadratures, SKn

N equations become identical to P2N�1 or DPN�1 (or
SP2N�1 or SDPN�1) equations. Numerical verification of all methods presented is carried out
using a 1D participating isotropic slab medium. The SKN method proves to be more accurate
than SKn

N approximation, but it is analytically more involved. It is shown that the SKn

N with
proposed BCs converges with increasing order of approximation, and the BCs are applicable to
SPN or SDPN methods.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Radiative heat transfer analysis in a participating medium
requires solution of radiative transfer equation (RTE). RTE is an
integro-differential equation with five independent variables
—three in space (x, y and z) and two in direction (θ and φ)
coordinates. This inherent nature of the RTE makes it very
difficult to obtain an exact solution. As a consequence, it is not
surprising to encounter several approximate methods in the

literature to solve the RTE, besides their ‘improved’ and/or
‘modified’ extensions to overcome certain limitations.

Exact solutions of RTE are obtained from the solution of so
called radiative integral transfer equations (RITEs). Since the
angular dependency of RTE is completely eliminated, one has
to deal with only spatial variables when solving the RITEs.
Analytical solutions are available only in 1-D idealized cir-
cumstances; on the other hand, numerical solution techni-
ques of RITEs are cpu-time demanding. For this reason, the
RITEs are not suitable to solve practical engineering problems.
Faced with this reality, analysts have been seeking approx-
imate, yet accurate and efficient methods that have the
capability of solving various radiative transfer problems. Most
methods in the field of radiative transfer stem from angular
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discretization of the RTE. In this paper, however, neither
theoretical nor computational aspects of these methods are
ventured into; the scope is restricted with the existing
methods that do not deal with angular discretization.

Spherical harmonics, or PN, approximation is perhaps
one of the earliest methods employed to the solution of
Boltzmann's equation encountered in astrophysics, nuclear
reactor physics and thermal radiative transfer. P1 approx-
imation quic-
kly became attractive due to its simplicity, but soon it
was discovered that P1 (or diffusion) approximation was
accurate only for optically thick media [1]. Next logical
step was to increase the order of approximation to obtain
reasonably accurate solutions for optically thin media. As
the number of spherical harmonics (order of the PN) is
increased, the accuracy improves only slowly; however,
mathematical complexities of the PN equations increase
dramatically [1–4]. This feature of the PN method became
its main shortcoming and an obstacle in incorporating
high order approximations into neutron transport (or
thermal radiation) calculations.

Another method which found application mostly in neu-
tron transport theory is the so-called double spherical har-
monics (or double PN—DPN or PNN) approximation introduced
by Yvon [5]. In fact, in the field of radiative transfer, a similar
approach was independently proposed much earlier by
Schuster [6] and Schwarzschild [7]. The method is known as
the Schuster–Schwarzschild (or two-flux or DP0) approximation.
The motivation behind the DPN method is that the PN method
is relatively accurate inside of a large homogeneous medium
where intensity is a rather slowly varying function of angle.
A discontinuity in intensity at boundaries occurs, and large
errors may arise at such points. These are due to the difficulty
in expressing a discontinuous function in terms of a series of
continuous functions. To improve the convergence of the
solution at boundaries, Yvon separates the components of
the radiation traveling in the forward and backward directions

which yields in improved solutions over the PN method. The
DPN approximation was generally applied to the radiative
transfer of 1-D planar and spherical media [8]. Tsai [9] nume-
rically solved the DP1 equations in studying combined con-
duction and radiation heat transfer in absorbing, emitting, and
anisotropically scattering layers. Wan et al. [10] used the
method for radiative transfer in a planar media with Rayleigh
scattering. Mengüç and Iyer [11] used double spherical
harmonics method to formulate the DP1 approximation for a
medium with linear-anisotropic scattering. High order DPN,
just as PN method, has not found widespread applications
(other than planar media) in the radiative transfer field
basically due to the complexity of the equations.

In light of the foregoing arguments, a simpler alternative
of the spherical harmonics (other than P1) method was
sought. With this motivation, about 50 years ago, the simpli-
fied PN (or SPN) method was introduced by Gelbard [12] to
solve the neutron transport equation. Gelbard, taking a
heuristic approach, applied the PN equations of 1-D planar
medium to 3-D media, as explained in detail in Section 4.
Similar to standard PN, Mark and Marshak boundary condi-
tions developed for the planar geometry were also employed
to the SPN. Although the SPN equations are much more easily
manageable, the method lacked theoretical foundations
which hindered its widespread use in the fields of nuclear
reactor physics and thermal radiation. Theoretical justifica-
tions for the SPN were provided by Larsen et al. [13,14] and
Pomraning [15]. Larsen used an asymptotic analysis from
which he was able to show that the SPN method was an
asymptotic correction to the diffusion (differential) approxima-
tion whereas Pomraning used a variational analysis to
asymptotically relate the SPN to PN equations in planar
geometry. A detailed review of the history and theoretical
developments of the SPN method was given by McClarren
[16]. The method, however, found limited applications in the
radiation transfer up until recently. Larsen et al. [17] applied
the SPN method to radiative heat transfer in optically thick

Nomenclature

a1 coefficient of linear anisotropy
Dn artificial diffusion coefficient defined as

¼ μ2n=β (m)
En(x) nth order exponential integral function
G incident energy (W m�2)
fG, fq direct radiant energy contributions defined by

Eqs. (4) and (5)
I incident radiation (W m�2 sr�1)
Ib blackbody radiation intensity (Wm�2 sr�1)
Kn(x) nth order modified Bessel function
Pn(x) nth order Legendre polynomial
R radius of cylinder/sphere (m)
r position vector inside a medium (m)
rw position vector on a surface (m)
r0 radius of a cylinder or sphere (m)
S0 isotropic medium source defined by Eq. (3)
S1 anisotropic source defined by Eq. (3)
T temperature (K)

q net radiative heat flux (W m�2)
wn weights of half- or full-range Gauss–Legendre

quadratures
x,y,z coordinates variables
x0 slab medium half thickness (m)

Greek symbols

β extinction coefficient (m�1)
δ Delta Dirac function
τ optical path
κ absorption coefficient (m�1)
ρ distance between two points
μ angular cosine
μn abscissas of half- or full-range Gauss–

Legendre quadratures
ω scattering albedo
ss scattering coefficient (m�1)
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