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a b s t r a c t

Beyond the ubiquitous colloidal sphere, optical tweezers are capable of trapping myriad
exotic particles with wildly varying geometries and compositions. This simple fact opens up
numerous opportunities for micro-manipulation, directed assembly and characterization of
novel nanostructures. Furthermore, the mechanical properties of optical tweezers are
transformed by their contents. For example, traps capable of measuring, or applying,
femto-Newton scale forces with nanometric spatial resolution can be designed. Analogous,
if not superior, angular sensitivity can be achieved, enabling the creation of exquisitely
sensitive torque wrenches. These capacities, and others, lead to a multitude of novel
applications in the meso- and nanosciences. In this article we review experimental and
theoretical work on the relationship between particle geometry, composition and trap
properties. A range of associated metrological techniques are discussed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past two decades optical tweezers have become
an indispensable tool in the meso-sciences. In a typical
experiment, optical gradient forces are used to hold a colloidal
sphere in the high intensity region surrounding the focal point
of a tightly focused Gaussian beam. Since, in this case, the
optical force field is locally harmonic and conservative, the
equipartition theorem allows the elastic energy of the trap to
be equated with the allowed thermal energy, 1

2k〈x
2〉¼ 1

2kBT
(see [1], for example). Accurate measurements of the position
of the sphere, and its variance, can therefore be used to find k,
the trap stiffness, and can subsequently be used to measure
small, pN scale forces. The applications with, perhaps, the
greatest significance arise in biology, where the technique can
be used to probe the mechanics of vital biological processes.
Numerous reviews of optical tweezers technology and appli-
cations exist in the literature. Grier has provided an excellent,

general account of optical tweezers, including holographic
optical tweezers [2]; more recent developments are summar-
ized by Bowman and Padgett [1]. Neumann and Block
concentrate on instrumentation [3]. Applications of these
techniques to biological systems are reviewed elsewhere
[4–6]. In [7], the use of spatial light modulators to hologra-
phically shape optical fields, and thereby the force fields they
generate, is discussed and the special case of optical vortices is
treated by Padgett and Bowman [8]. This latter approach
indicates a growing theme in optical micro-manipulation;
progress in micro-mechanical measurement requires the
generation of novel force fields. Whilst substantial effort has
been devoted to shaping optical fields to this end, the
conjugate approach, of shaping particles to produce desirable
forms of behaviour, is less well established. This point was
recently made elsewhere [9]. In fact, this strategy has been
pursued by various research groups, for perhaps a decade, but
the work has yet to be identified with an underlying theme.
It is the purpose of this review to do just that: to collect and
unite the progress made in this area, to draw relevant
conclusions and to anticipate future avenues to explore.
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2. Theoretical underpinning

2.1. Variety of optical forces

In the following section we examine the various
sources and forms of force that can be applied by time
harmonic optical fields, to discrete particles. Before pro-
ceeding it should be noted that none of the material
presented below is completely free of controversy. Where
appropriate, references are given that express varying
opinions or document issues under debate. It is hoped
that the main perspective given below can be used to
qualitatively understand the physical effects documented
in the remainder of the paper.

2.1.1. Small particle approximation
Most, but not all, optical trapping experiments make

use of particles with typical dimensions on the order of a
micron. However, insight into the nature of optical forces
can be acquired by considering the case of particles that
are much smaller than the incident wavelength. In this
approximation, objects are treated in the quasi-static limit
and can be represented by point polarizabilities [10]. Initial
attempts at describing optical traps in this regime
expressed forces in terms of scattering cross sections
augmented by a term proportional to the intensity gradi-
ent [11,12]. More recent work makes use of equations that
make no assumptions about the local structure of the
incident field.

In general, the optical force can be broken into three
parts. The first is associated with the electric polarizability,
the second with magnetic polarizability and the third arises
from interference between the previous two [13–16].
In addition, polarizabilities that take into account the small,
but finite, phase changes across the particle are used so as
to comply with the optical theorem [17]. As will be seen,
this modification is necessary to correctly represent optical
scattering forces. At optical frequencies, most materials are
non-magnetic, μ¼ 1. The resulting force on a point electric
polarizability is given by [18]

〈F r1ð Þ〉¼ 1
2
R ∑

i
pi∇E

⋆
i ðrÞjr ¼ r1

!
:

 
ð1Þ

Here, Fðr1Þ is the force on the particle with coordinates
r1, p is the polarization, p¼ αE and α is the total, dynamic
polarizability [17]. The dynamic polarizability for a small
isotropic sphere is given below, in terms of the usual
Claussius–Mossotti polarizability, α0:

α¼ α0= 1�2
3 ik

3
0α0

h i
; ð2aÞ

α0 ¼ a3
ϵ�1
ϵþ2

: ð2bÞ

For isotropic polarizabilities, this equation can be sug-
gestively rewritten to reveal three distinct components to
the optical force [19–21]:

〈F〉¼ 1
4
R αð Þ∇jEj2þCtot

c
〈S〉þCtotc ∇� 〈Ls〉ð Þ: ð3Þ

Here E is the electric field, Ctot ¼ k0I½α�=ϵ0 (with k0 the
wave-vector of the incident light), is the total cross section

and Ls is the transverse electromagnetic spin density
[22,19]. The first term, the gradient force, is derived from
the gradient of the electric energy [16] and is proportional
to the real part of the polarizability. The second two are
scattering forces; the Poynting force, proportional to 〈S〉,
and a term associated with inhomogeneities of the spin
angular momentum of the field [22,21]. These latter terms
depend on the imaginary part of the dynamic polarizabil-
ity, α, which, even for non-absorbing particles, is non-zero
(see Eq. (2a)). Self-evidently, the gradient force is con-
servative; the scattering forces, in general, are not (this
latter point is vividly demonstrated by the optical vortices
considered in [8,2]). In the case of an optical trap, particles
can be confined when the gradient force is dominant.
Under these conditions a mechanical equilibrium emerges
down stream of the focal point, the off-set arising as a
consequence of the scattering forces.

This expression can be simply extended to geometri-
cally or optically anisotropic particles by replacing α in
Eqs. (2a) and (2b), with an appropriate tensor [10]. Explicit
derivation of the dynamic polarizability of spheroidal
particles is provided in [23]. A decomposition analogous
to that expressed by Eq. (3) can be written down for
anisotropic point particles; equations similar to Eq. (3)
operate in directions parallel to each of the Eigen vectors
of the polarizability tensor, and α and s are replaced by
appropriate Eigen values. In this case, the gradient force
itself becomes non-conservative at all points (since it is no
longer the gradient of a scalar field), except those at which
all first derivatives of the intensity vanish identically (i.e. at
the focal point of a Gaussian beam).

Small anisotropic particles also experience optical tor-
ques [24]:

〈Γ〉¼ 1
2
R p� ðα�1

0 pÞ⋆� �
: ð4Þ

This equation contains a subtlety. A direct use of 〈Γ〉¼
1
2R p� E⋆� �

with p¼ αE would imply that a non-absorbing,
spherical particle could be made to spin in circularly
polarized light (〈Γ〉¼ 1

2R p� E⋆� �¼ i
2I αð Þ E� E⋆� �

; ðE�
E⋆Þ is either imaginary or zero, and IðαÞ is a non-zero
scalar, for non-absorbing dielectric spheres, Eq. (2a)). As
will be seen, this is not possible and the form of Eq. (4)
carefully compensates for this. For anisotropic particles α0
is a tensor [10]. Evidently, the torque will vanish when the
polarization, p, is parallel and in phase with the electric
field, E. Hence, if the incident field is linearly polarized it
will align the particle. Alternatively, as can be easily
verified, circularly polarized light will give rise to contin-
uous rotation. These observations apply equally to opti-
cally and geometrically anisotropic particles, although the
precise form of the Claussius–Mossotti polarizability ten-
sor varies, and explicit forms of the dynamic polarizability
require careful evaluation.

From the above considerations, we expect small parti-
cles to orient with respect to the local electric polarization
and to migrate towards high intensity regions whilst
simultaneously being propelled by scattering forces in
the direction of the Poynting vector [25]. Because the
particles discussed here are point-like, they do not sample
field inhomogeneities above first order.
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