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a b s t r a c t

In this paper the basic scheme of the Discrete Sources Method (DSM) has been modified to
consider polarized light scattering by a non-spherical particle placed on a metal film
deposited on a glass prism. The modified DSM model has been applied to examine the
scattering properties of both metallic and dielectric particles. The Scattering Cross-Section
enhancement versus particle diameter, refractive index, shape and height with respect to
the film surface has been investigated. It has been demonstrated that it is possible to
increase the corresponding scattered intensity by several orders choosing the appropriate
shape of the gold particle and its height with respect to the film surface. Additionally, it
has also been found that the DSC distribution in the incident plane shows narrow beams
of the intensity directed inside a prism into the incident and specular directions.

& 2014 Published by Elsevier Ltd.

1. Introduction

Surface plasmon (SP) excitation is known to contribute
to exceptional optical properties of metal nanostructures.
The excitation of SPs by light is denoted by a surface
plasmon resonance (SPR) for planar surfaces or localized
surface plasmon resonance for nanometer-sized metallic
structures [1,2]. This phenomenon is of great potential
application in nanophotonics, biophotonics, sensing, bio-
chemistry and medicine [3]. In particular this phenom-
enon has been applied in developing optical antennas,
biosensors, solar cells, transducers, nanolithography tools
and OLEDs [4–8]. Typical metals that support SPs are silver
and gold, but metals such as copper, titanium, or chro-
mium can also support SP generation [9,10].

In order to design nanostructures with desired plasmo-
nic properties, it is necessary to be able to simulate their
optical response with high numerical accuracy. Application
of computer simulation allows predicting the fundamental

scattering properties of an entire system. Additionally,
modeling of the nanostructures0 properties and analyzing
their light scattering behavior can be used for a correct
interpretation of experimental data. For three-dimensional
light scattering simulation, accurate modeling requires an
appropriate choice of the specific numerical method. Since
the most interesting nanoeffects are based on plasmonic
resonances, the corresponding computer model must be
based on a rigorous Maxwell theory.

Various numerical techniques have been used to this
end. Finite Difference Time Domain (FDTD) [11] solves
Maxwell0s equations in the differential form in the time
domain. FDTD is a simple technique, because it does not
require profound knowledge of Maxwell theory. It is based
on simple mathematical operations, which can be handled
even by very simple computers. Unfortunately, these
models are not accurate enough in some interesting cases
in particular for plasmonic application [12]. Additionally, a
conventional FDTD scheme does not account for an infinite
plane interface and one has to apply special tricks to
incorporate it [13].

Finite Element Method (FEM) [14] solves Maxwell0s
equations in the differential form in the frequency domain.
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The FEM implementation leads to matrix equations with
large sparse matrices. The approach allows to obtain a very
high numerical accuracy, which is important when simu-
lating nanostructures that have not yet been fabricated.
But direct application of the FEM to structures with
plasmonic features can cause problems related to a trun-
cation of the simulation domain [15]. Besides, FDTD and
FEM have the disadvantage that they require both the
scatterer and the background volume to be discretized,
leading to higher computer demand.

Other common approaches are commonly known as
semi-analytical methods. This means that Green0s theorem
has to be applied to the system of Maxwell equations [16]
to reduce the scattering problem formulated in the whole
of 3D space to the impurity domain. There are volume-
based methods, similar to Discrete Dipole Approximation
(DDA) [17] and Volume Integral Equation (VIE) [18], which
are suitable for modeling of light scattering by arbitrary
impurities; and the surface based methods, such as T-
matrix method [19], Surface Integral Equation (SIE) [20],
Multiple MultiPole Technique (MMP) [21] and Discrete
Sources Method (DSM) [22]. While volume-based methods
can handle any kind of inhomogenities, they are pretty
time consuming, especially if it is required to account for
interaction between impurity and stratified interface.
Surface-based methods seem to be more appropriate for
the treatment of homogeneous features deposited near an
interface. Most of them are direct methods. This means
that they enables to solve a scattering problem for a whole
set of the incident angles and polarizations at the same
time. This is in contrast to DDA or VIE which require to
start an iterative process for any new incident angle.
Among the others, the MMP and the DSM have several
advantages. First of all they are semi-analytical meshless
methods that do not require any integration procedure.
Besides, MMP and the DSM also provide a unique oppor-
tunity for a reliable validation of the results, as the errors
of the solution can be calculated explicitly by evaluating
the impurity surface residual [21,22].

As is known, diverse practical applications in nanoplas-
monics require considering the simulation of scattering by
features embedded in a stratified interface [6]. This leads
to the necessity of accounting for multiple light reflections
between a feature and the interface. The easiest way to
handle this consists of incorporation of a Green Tensor
(GT) of the stratified interface [23]. This can be easily done
in the frame of semi-analytical methods only [17–25].

In this paper the basic scheme of the DSM is modified
to consider non-spherical particle located at a gold film
deposited upon a glass prism. Differential Scattering Cross-
Section and Transmission and Reflection Cross-Sections
are examined in details versus particle diameter, refractive
index, shape and height with respect to the film surfaces.
In particular it demonstrated that it is possible to increase
the scattered intensity several orders by setting the shape
of the particle and its height.

The theory of the DSM is considered in the next part of
the paper and is followed by a short description of its
numerical scheme. The computer simulation results based
on the DSM model are presented and discussed in the last
part of the paper.

2. DSM outlines

We consider a configuration consisting of a glass prism
(half-space D2, zo0), a metal film with a thickness d
deposited on the prism (region D1, d4z40), and the
other part of the space (D0, z40). We assume that the
half-space D0 contains a penetrable axially symmetric
particle which internal domain is denoted by Di (See
Fig. 1). We will refer to the particle surface as ∂Di. Let us
choose a Cartesian coordinate system with its origin O on
the prism surface and the Oz axis directed along the axis of
symmetry of the particle. For external excitation, we
consider a linearly polarized electromagnetic plane wave
{E0,H0} propagating from the prism at angle θ2 to the Oz
axis. Then mathematical statement of the scattering pro-
blem can be written in the following form:

∇� Hζ ¼ jkεζEζ; ∇� Eζ ¼ � jkμζHζ B Dζ ; ζ¼ 0;1;2; i

np � ðEiðpÞ�E0ðpÞÞ ¼ 0;
np � ðHiðpÞ�H0ðpÞÞ ¼ 0; pA∂Di;

ez � ðEαðpÞ�EβðpÞÞ ¼ 0;
ez � ðHαðpÞ�HβðpÞÞ ¼ 0; pA Ξαβ;
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here {Eζ,Hζ} is the total field in the corresponding domain
Dζ, k¼ω/c, np is the outer unite normal vector to the
particle surface ∂Di, ez is the unite basis vector of the
Cartesian coordinate system directed along the Oz axis,
Ξαβ, α,β¼0,1,2, is the interface plane separating domains Dα

and Dβ, kα¼k(εαμα). We assume that the particle surface ∂Di

is smooth enough and that the p arameters of the media
satisfy the following conditions Imεζ ; μζr0, which corre-
spond to the time dependence – exp jωt

� �
. Then, the

boundary scattering problem (1) has a unique solution.
Let us first solve the problem of reflection and trans-

mission of the plane wave {E0,H0} at the plane-layered
interface. This can be done analytically to obtain the
external excitation field {Eζ

0
, Hζ

0
} in each domain Dζ,

ζ¼0,1,2. This field satisfies the transmission conditions
enforced at planes (z¼0,d) and the corresponding infinity
conditions. Then we define the scattered field in each Dζ,
ζ¼0,1,2 as Eζ

s¼Eζ�Eζ
0
,Hζ

s¼Hζ�Hζ
0
. The scattered field

should satisfy the infinity conditions and the transmission
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Fig. 1. Scattering problem geometry.
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