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a b s t r a c t

We suggest a new analytical long-wavelength approximation for rectangular parallelepi-
peds based on replacement of the internal field with a uniform one. The approximation is
not quite accurate (the typical accuracy is of the order of about 10%) but is extremely
simple and works in a sufficiently wide region of parameter values.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The most known long-wavelength approximation in the
light-scattering theory is the approximation used by Lord
Rayleigh to derive simple expressions for the optical prop-
erties of ellipsoids small in comparisonwith the wavelength
of the incident plane wave [1]. The approximation has been
naturally extended to layered ellipsoids (see, e.g., [2,3]) and
ensembles of spheres [4,5]. Recent improvements of the
approximation for homogeneous ellipsoids are briefly dis-
cussed, e.g., in [6]. Note that the expressions are completely
analytical only in the case of spheroids.

For small non-ellipsoidal scatterers, to find their optical
properties within the Rayleigh approximation, one needs
to numerically solve the corresponding electrostatic pro-
blem [7]. It can be done by different methods (see, e.g.,
their discussion in [8]). Numerical results have been
obtained for a number of shapes: finite cylinders, cones,
semispheres, etc. (see, e.g., [9,10] and references therein).
In particular, dielectric rectangular parallelepipeds have

been considered in some detail in [11]. Though the well
developed iterative method suggested in [8] to treat small
arbitrary shaped scatterers is called analytical, it involves
multiple integrals, which is not much simpler than usual
numerical solution of integral equations.

An approximate approach to the Rayleigh approxima-
tion for any axisymmetric particles has been presented in
[12]. It is shown that assuming that the internal field is
uniform, one can express polarizability through a one-
dimensional integral that can be found analytically for
many different shapes.

In this paper we apply an analog of the extended
boundary condition method (EBCM – see [13,14] and
references therein) to solve the three-dimensional electro-
static problem for a nearly arbitrary shaped particle, which
gives the ground for understanding of the nature of the
uniform internal field approximation and its comparison
with the Rayleigh approximation. Note that such a simpli-
fication of the EBCM may be also useful for consideration
of not yet quite clear properties of this method [15].

Applying the uniform internal field approximation, we
obtain a simple analytical expression for polarizability of
rectangular parallelepipeds. Applicability and accuracy of
this expression are discussed, and a comparison with the
Rayleigh approximation for ellipsoids is made. Note that
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an interest to long-wavelength approximations weakened
when powerful computers appeared, but it has to some
extend increased recently due to popularity of nano-
technologies (see, e.g., [16]).

2. Solution of three-dimensional electrostatic problem by
EBCM analog

Let us consider a three-dimensional particle placed in
the uniform electric field E

!
0. We introduce Cartesian

coordinates whose origin is inside the particle (and coin-
cides with the center of the particle when it exists) and the
spherical coordinates ðr; θ;φÞ in such a way that

x¼ r sin θ cos φ; y¼ r sin θ sin φ; z¼ r cos θ: ð1Þ
We confine our consideration by star-like particles, i.e. by
particles whose surface equation can be written in the
form r¼ rðθ;φÞ.

To solve the electrostatic problem, we use the standard
scalar potentials Φð r!Þ, related to the electric fields E

!ð r!Þ
as follows [17]:

E
!¼ �∇Φ: ð2Þ

The potential of the external field is denoted by Φð1Þ
1 , the

potential of the field arisen due to the particle presence by
Φð1Þ

2 , and the potential of the internal field by Φð2Þ
1 . Note

that the potentials with the lower index 1 and 2 are
regular and irregular at the coordinate origin, respectively.
The upper indices 1 and 2 correspond to the fields outside
and inside the particle, respectively. From physical reasons
Φð2Þ

2 ¼ 0.
From the Maxwell equations we find that all the

potentials satisfy the Laplace equation:

ΔΦ¼ 0: ð3Þ
The boundary conditions at the particle surface can be

expressed using the potentials as follows:

Φð1Þ
1 þΦð1Þ

2 ¼Φð2Þ
1 ;

∂ðΦð1Þ
1 þΦð1Þ

2 Þ
∂n

¼ ɛ
∂Φð2Þ

1

∂n

9>=
>;

r!AS;

ð4Þ

where ∂=∂n is the derivative along the outward normal to
the particle surface S, ɛ the ratio of the dielectric permit-
tivity of the particle to that of the surrounding medium.

The Laplace Equation (3) written in spherical coordi-
nates has the following solutions that can be found by
using the separation of variables:

Ψ ð1Þ
ml r!
� �

¼ rlψml θ;φð Þ; Ψ ð3Þ
ml r!
� �

¼ 1
2lþ1

r�ðlþ1Þψml θ;φð Þ;
ð5Þ

where the angular functions ψmlðθ;φÞ can be of two kinds:

ψmle θ;φð Þ ¼ 2�δ0m
2π

P
m
l cos θð Þ cos mφ;

ψmlo θ;φð Þ ¼ 2�δ0m
2π

P
m
l cos θð Þ sin mφ: ð6Þ

Here

P
m
l cos θð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þ

2
ðl�mÞ!
ðlþmÞ!

s
Pm
l cos θð Þ; ð7Þ

where Pm
l ð cos θÞ are the associated Legendre functions of

the first kind, δ0m ¼ 1 for m¼0 and δ0m ¼ 0 for ma0. Note
that the angular functions ψml form a complete orthonor-
malized system in the space L2ðΩÞ, where Ω is a spherical
surface having the center at the coordinate origin.

The potentials introduced can be represented by the
following expansions in terms of the corresponding solu-
tions to the Laplace equation:

Φð1Þ
1 ¼ ∑

1

m ¼ 0
∑
1

l ¼ m
að1ÞmlΨ

ð1Þ
ml ð r

!Þ; ð8Þ

Φð2Þ
1 ¼ ∑

1

m ¼ 0
∑
1

l ¼ m
að2Þml Ψ

ð1Þ
ml ð r

!Þ; ð9Þ

Φð1Þ
2 ¼ ∑

1

m ¼ 0
∑
1

l ¼ m
bð1ÞmlΨ

ð3Þ
ml ð r

!Þ: ð10Þ

Since the external field is uniform, the expansion of Φð1Þ
1

is simplified. When the external field is parallel to the x
axis, i.e. E

!
0 ¼ i

!
xE0, the potential is

Φð1Þ
1 ¼ �xE0 ¼ �r sin θ cos φE0

¼ �rP1
1ð cos θÞ cos φE0 ¼ að1Þ11eΨ

ð1Þ
11eð r

!Þ; ð11Þ
or in other words all the coefficients of the expansion of
Φð1Þ

1 are equal to zero, except for að1Þ11e ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
4π=3

p
E0.

When the external field is parallel to the y axis, the
situation is similar, though the dependence on the azi-
muthal angle is given by sin φ, and Eq. (11) contains the
functions Ψ ð1Þ

11oð r
!Þ and the coefficient að1Þ11o.

When the external field is parallel to the z axis, i.e.
E
!

0 ¼ i
!

zE0, the potential equals

Φð1Þ
1 ¼ �zE0 ¼ �r cos θE0 ¼ að1Þ01Ψ

ð1Þ
01 ð r

!Þ; ð12Þ
i.e. we have að1Þ01 ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
4π=3

p
E0.

Unknown coefficients of the expansions of Φð2Þ
1 and Φð2Þ

1
can be found in different ways like in the case of light
scattering. Here we apply an analog of the extended
boundary condition method, i.e. the corresponding surface
integral equations are used. A similar approach has been
applied in [18] to solve a two-dimensional (axisymmetric)
electrostatic problem. Advantages and limitations of the
EBCM method are well known (see, e.g., [19,20]).

The potentials under consideration are solutions to the
Laplace Equation (3) and hence satisfy the integral equa-
tions found for such solutions (see [21]). After simple
transformations (see for more details [18]) we get the
following integral equations:

ɛ�1ð Þ
Z
S

∂Φð2Þ
1 ð r!0Þ
∂n0 G r!; r!0� �( )

ds0

¼
Φð1Þ

1 ð r!Þ�Φð2Þ
1 ð r!Þ; r!AD;

�Φð1Þ
2 ð r!Þ; r!AR3\D;

8<
: ð13Þ

where D is the domain occupied by the particle. The Green
function of the scalar Laplace equation for free space is

Gð r!; r!0Þ ¼ 1=4π r!� r!0��� ���; ð14Þ

where r! and r!0
are the radius-vectors to the observation

and integration points, respectively. The expansion of the
Green function in terms of the spherical functions is well
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