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Interplanetary dust particles (IDPs) are an important constituent of the earth's strato-
sphere, interstellar and interplanetary medium, cometary comae and tails, etc. Their
physical and optical characteristics are significantly influenced by the morphology of
silicate aggregates which form the core in IDPs. In this paper we reinterpret scattering
data from laboratory analogs of cosmic silicate aggregates created by Volten et al. (2007)
[1] to extract their morphological features. By evaluating the structure factor, we find that
the aggregates are mass fractals with a mass fractal dimension d,;, ~ 1.75. The same fractal
dimension also characterizes clusters obtained from diffusion limited aggregation (DLA).
This suggests that the analogs are formed by an irreversible aggregation of stochastically
transported silicate particles.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fractal geometries provide a description for many forms
in nature such as coastlines, trees, blood vessels, fluid flow
in porous media, burning wavefronts, dielectric breakdown,
diffusion-limited-aggregation (DLA) clusters, bacterial colo-
nies, and colloidal aggregates. [2-4]. They exhibit self-similar
and scale-invariant properties at all levels of magnification
and are characterized by a non-integer fractal dimension.
These features arise because the underlying processes have
an element of stochasticity in them. Such processes play an
important role in shaping the final morphology, and their
origin is distinctive in each physical setting.

Irregular and rough aggregates have also been observed in
the astronomical context. Naturally found cosmic dust aggre-
gates, known as interplanetary dust particles (IDPs), are
collected in earth's lower stratosphere. They are formed when
dust grains collide in a turbulent circumstellar dust cloud,
such as the solar nebula, and are an important constituent of
the interstellar medium, interplanetary medium, cometary
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comae and tails, etc. Mass spectroscopy analysis of IDPs has
revealed that their primary constituents are (i) silicates of Fe,
Mg, Al and Ca, (ii) complex organic molecules of C, H, O and
N, (iii) small carbonaceous particles of graphite, coal and
amorphous carbon and (iv) ices of CO,, H,O and NHs [5-9].
Among these, there is an exclusive abundance of silicates
which aggregate to form particle cores. They have been
described as fluffy, loosely structured particles with high
porosity. The other constituents contribute to the outer
covering or the mantle and are usually contiguous due to
flash heating from solar flares and atmospheric entry [10].
The core, being deep inside retains its morphology. The
latter is believed to have a fractal organization characterized
by a fractal dimension, but this belief is not on firm grounds
as yet [11,12]. As the core morphology affects the physical
and optical characteristics of IDPs, its understanding has
been the focus of several recent works [13-18].

Two classes of stochastic fractals are found in nature. The
first class is that of surface fractals whose mass M scales with
the radius of gyration R in a Euclidean fashion, i.e., M ~R4,
where d is the dimensionality. However, the surface area S
increases with the radius as S~ R%, where d; is the surface
fractal dimension and d—1 <ds <d [19]. Interfaces gener-
ated in fluid flows, burning wavefronts, dielectric breakdown
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and deposition processes are examples of surface fractals.
The second class is that of mass fractals which obey the
scaling relationship, M ~ R%, where d,, is the mass fractal
dimension and 1 <d,; <d. Examples of mass fractals are
DLA clusters, bacterial colonies and colloidal aggregates.
Further, in many situations, mass fractals are bounded by
surface fractals [2-4]. As a matter of fact, the above mass
fractals belong to this class.

There are many unanswered questions in the context of
fluffy cores or silicate aggregates of IDPs. For example, are they
mass fractals, bounded by surface fractals? What is their mass
and surface fractal dimension? What kind of aggregation
mechanisms are responsible for this morphology? What are
the consequences of fractal organization on the evolution of
clusters? In this paper, we provide answers to some of these
questions using the real-space correlation function C(r) and the
momentum-space structure factor S(k). Smooth morphologies
are characterized by the Porod law [20,21]. The signature of
fractal domains and interfaces is a power-law decay with non-
integer exponents in C(r) and S(k). As typical experimental
morphologies are smooth on some length scales and fractal
on others, the behaviors of C(r) vs. r and S(k) vs. k are
characterized by cross-overs from one form to another. We
identify these features in laboratory analogs of cores of IDPs
created by Volten et al. using magnesio-silica grains, by
reinterpreting their light-scattering data [1]. We find that
these aggregates are mass fractals with a fractal dimension
dm ~ 1.75. The same fractal dimension characterizes diffusion
limited aggregation (DLA). We therefore infer that aggregation
mechanisms of silicate cores in IDPs are stochastic and
irreversible as in DLA.

This paper is organized as follows. In Section 2, we
describe the tools for morphology characterization and
their usage to obtain mass and surface fractal dimensions.
In Section 3, we describe the experimental analogs of
silicate cores in IDPs and obtain the structure factor from
their light scattering data to extract fractal properties.
In Section 4, we present a simulation of the DLA cluster,
and the evaluation of its structure factor and the corre-
sponding mass fractal dimension. Finally, we conclude with a
summary and discussion of our results in Section 5.

2. Tools for morphology characterization

A standard tool to obtain information about sizes and
textures of domains and interfaces is the two-point spatial
correlation function [21]

C(r) = (T Oy (T7)) — ()Y (1)), 1)

where w(7;) is an appropriate order parameter and
r=|7; —T;|. (We assume the system to be translationally
invariant and isotropic.) The angular brackets denote an
ensemble average.

The scattering of a plane wave by a rough morphology
can yield useful information about the texture of the
domains and interfaces in it. Thus, small-angle scattering
experiments (using X-rays, neutrons, etc.) can be used to
probe their nature. The intensity of the scattered wave in
these experiments yields the momentum-space structure
factor, which is the Fourier transform of the correlation

function [20-23]
g
S(kK)= / d7 etk T o), )

where K is the wave-vector of the scattered beam. The
properties of C(r) and S(k) provide deep insights into the
nature of the scattering morphology.

Consider a domain of size ¢ formed by spherical particles
of size a, as depicted schematically in Fig. 1(a). The typical
interfacial width w is also indicated. This prototypical mor-
phology could represent a colloidal aggregate, soot particles,
a DLA cluster, etc. The correlation function for such a
morphology can be approximated by

Ar', w<kr<é,
1-Cr=C(r)~{ B, r<w<a, 3)
a’, r<a.

The first term conveys information about the domain texture
probed by length scales w <r < ¢&. If the domain has no
internal structure, a=1 signifying the Porod decay [20,21].
For a fractal domain, on the other hand, « = d;,, —d, where d,,
is the mass fractal dimension [22,23]. The second term
conveys information about the properties of the interface,
probed by lengths a < r < w. For fractal interfaces, 0 < g <1,
and p is related to the fractal dimension as d; =d—p [24].
The third term is significant only if the building blocks are
particles of diameter a. In that case, y=1 for r<a, yielding the
Porod regime at a microscopic length scale.

In the Fourier space, Eq. (3) translates into the follow-
ing power-law behavior of the structure factor:

Ak~ el gk ew 1,
Stky~<{ Bk=U9*P w-l<k<al, 4)
Cr-@+n  gq-1<k.

The Porod decay of the form k~“*" in the scattered

intensity is typical of smooth domains or sharp interfaces
[20,21]. A deviation from this behavior to S(k) ~ k~@=% is
indicative of a fractal structure in the domains or inter-
faces. When physical structures have multiple length-
scales, one or more terms in Eqgs. (3) and (4) may
contribute. Their presence is characterized by cusps in
the correlation function, and corresponding power-laws in
the structure factor [25].

We illustrate the power laws and cross-overs discussed
above in the context of the 2-d morphology depicted in
Fig. 1(a). It should be noted that both the domain and the
interfacial boundary in this schematic are rough, self-
similar fractals. The structure factor S(k) vs. k for this
morphology obtained from the Fourier transform of the
spherically averaged correlation function C(r) vs. r is plotted
in Fig. 1(b) on a log-log scale. This function exhibits two
distinct regimes over large and small values of k as seen
from the best fit lines: a power-law decay with S(k) ~ k="
for £=1 <k <w~"1 and the Porod decay with S(k) ~ k=3 for
a-1 < k. With reference to Egs. (3) and (4), the power law
decay signifies a fractal domain morphology with a mass
fractal dimension d,;, ~ 1.71 while the Porod decay is due to
the smooth surface of the particles. The structure factor
corresponding to wave vectors in the interval
w-l<k<a 1 is due to scattering from the rough fractal
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