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a b s t r a c t

In this study, we perform numerical computations of electromagnetic fields including
applications such as light scattering. We present two methods for discretizing the
computational domain. One is the discrete-dipole approximation (DDA), which is a
well-known technique in the context of light scattering. The other approach is the
discrete exterior calculus (DEC) providing the properties and the calculus of differential
forms in a natural way at the discretization stage. Numerical experiments show that the
DEC provides a promising alternative for solving the general Maxwell equations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We compare two methods for solving the scattering
problems numerically. The first method is the discrete-
dipole approximation (DDA), which is a well-known tech-
nique in the context of light scattering, see, e.g., [1].
The second approach is based on discrete exterior calculus
(DEC), which provides the properties and the calculus of
differential forms in a natural way at the discretization
stage [2,3]. For electromagnetics the DEC is pioneered by
Bossavit and Kettunen [4–6] for antenna applications.
Our generalized DEC-formulation for the Maxwell equa-
tions [7] works on unstructured grids, and it covers both
the classical Yee's FDTD scheme and the Bossavit–Kettu-
nen approach. We concentrate on electromagnetic scatter-
ing problems but the methods can be used within
other application areas as well. The focus of this paper is

comparing the DEC with the DDA to validate the method
and to assess the properties in practice.

In particular, we are interested in developing numerical
methods tailored for solving large-scale problems effi-
ciently. That is why we pay more attention to the compu-
tational efficiency of the methods than to the increase of
computing power. The number of computational opera-
tions needed for solving the scattering problem with the
DDA is of order OðN log NÞ, where N is the number of
dipoles used for the space discretization. Assuming that
the number of time discretization steps is small compared
to the number of space discretization elements N, the
computational demand for the DEC method is close to
OðNÞ.

The rest of this paper is structured as follows. In Section 2,
we present the computational model for the light scattering
based on the Maxwell equations. We move on with
the discretization methods presented in Sections 3 and 4.
Section 5 is devoted to numerical experiments and compar-
ison between the methods. Finally, in Section 6, we present
concluding remarks.
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2. Computational model

For both discretization methods, the mathematical
model of electromagnetic waves is based on the Maxwell
equations:

ε
∂E
∂t

�∇�H¼ �sE; ð1Þ

μ
∂H
∂t

þ∇� E¼ 0; ð2Þ

where E and H are the electric and magnetic fields
respectively, ε is the electric permittivity, μ is the magnetic
permeability, and s is the electric conductivity. The equa-
tions presented above describe the time-dependent wave
propagation. For considering the time-harmonic wave
propagation, we substitute, into Eqs. (1) and (2), the
variables E¼ ReðE expðiωtÞÞ and H¼ ReðH expðiωtÞÞ, where
i is the imaginary unit, such that i2 ¼ �1, and ω is the
angular frequency. This relationship between time-
dependent and time-harmonic wave formulations has a
crucial role in developing efficient computational methods
for time-harmonic waves.

3. Discrete exterior calculus and exact controllability
approach

The discrete exterior calculus provides the properties
and the calculus of differential forms (see, e.g., [8]) in a
natural way at the discretization stage. For reader who is
familiar with the Finite Difference Time-Domain (FDTD)
method, we propose to keep that method in mind; in a
special case, the DEC is identical to FDTD [5,6]. The
advantage of our DEC-based method is the use of arbi-
trarily shaped well-centered polyhedron elements and
alternative Hodge operators. These modifications can sig-
nificantly increase the accuracy and efficiency of the
simulations. Our DEC-based method is developed for
solving three-dimensional time-harmonic problems in
domains of size 10–100 wavelengths. Next we give a short
introduction to the DEC, which is based on the discretiza-
tion of differential forms. We also present a staggered time
discretization scheme and describe an algorithm for utiliz-
ing the exact controllability method.

A discrete analogue of the smooth differential form is
called the discrete differential form (see, e.g., [9,2,3] for
details). The spatial discretization is based on a decom-
position of the domain into a cell complex, a collection of

fundamental objects which is called cells (see, e.g., [2]).
Basically, a 0-cell is a single point in space, a 1-cell is a
differentiable path between two 0-cells, and a p-cell (cell
of dimension p) is a connected differentiable p-manifold
with a boundary constructed by a finite set of (p�1)-cells.

An important property of the differential forms is that a
p-form can be integrated on a p-manifold as described in
Chapter 7 of Abraham et al. [10]. With this property in
mind, the discrete p-form is defined as a set of integration
values paired with oriented p-cells of a mesh. For a more
detailed description of cells, meshes, and discrete forms
we refer the reader to see Hirani's thesis [2].

To discretize the Maxwell equations for the DEC, the
vector fields E, B, H, and D must be transferred to the
corresponding discrete forms E, B, H, and D. The usual
procedure is to define E on the primal edges (1-form), B on
the primal faces (2-form), H on the dual edges (1-form),
and D on the dual faces (2-form). The values of the discrete
forms are computed from vector fields by

Ei≔
Z
Li
E � dl;

Bj≔
Z
Sj
B � ds;

Hj≔
Z
Lnj

H � dl;

Di≔
Z
Sni

D � ds;

where Li and Lnj are the primal and dual edge elements,
and Sni and Sj are the corresponding dual and primal face
elements respectively. It is notable that, with the well-
defined mesh and dual mesh, the corresponding dual
elements always exist. The positioning of the discrete form
values is illustrated in Fig. 1.

The space-discretization of the Maxwell equations can
be carried out exactly by using the discrete differential
forms, and the orientation of a cell complex is an impor-
tant property in the discretization. The Faraday law is
written on the primal elements as

∂tBj ¼ � ∑
n

i ¼ 1
ðd1Þj;iEi;

where d1 is the incidence matrix defining the neighbour-
ing relations and relative orientations of the primal edges
and faces. The incidence matrix d1 corresponds to the curl
operator, and it transfers 1-forms to 2-forms. It has non-
zero values only, if the current edge Li is included in the

Fig. 1. The E and B fields are defined on the primal elements (left). Similarly the H and D fields are defined on the dual elements (right).
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